CE-474: Structural Analysis 11

What is Structural Analysis?

e Determine the "response" or behavior of a structure -

under some specified loads or combinations of loads

(Instructor: Arun Prakash)
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e Response includes: support reactions, internal stresses,
and deformations / displacements

e [t can also include: vibrations, stability of components /
system, state of the constituent materials, occurrence of
damage / failure etc.

Why is Structural Analysis needed and how does it fit into the "Big Picture?"

N
N

(Role of Structural Analysis in the Design Process)

Consider a design project: say Bridge
Things to consider:
= Type of bridge
= Loading classification
= Traffic/Live Load,
= EQ, Winds, Snow, Stream Ice
= Temperature Thermal
= Impact / Blast*
= Fatigue
= Design Life ~50 years

e Design Process
= Assume a solution (based on experience, requirements)
= Preliminary structural analysis
C = Refine the design )
= Check with detailed structural analysis

e Designs methodologies
= ASD - Allowable Stress Design
= LRFD - Load & Resistance factor design

yLeght

Note: Design is an inverse problem. It has many possible solutions.
e [t can be framed as an optimization problem also:
Choose design parameters (criteria)
= Material / Construction costs
= Performance-based criteria
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Problem Statement for Structural Analysis

Given: s Jd 3 # %3 } %}
e Structure Geometry, - 7
* Loading, coll
e Material properties

e Support (boundary) conditions —|

Indeterminate Determinate

To find: (unknowns at each and every point of the structure):
e External reactions
e Internal stresses and stress-resultants (axial force, shear force, bending moment)
¢ Deflections / displacements
e Strains
e Material response

Conditions / Governing Equations to satisfy using structural analysis:

A S —r
1. Statics: Equilibrium of Forces and Moments é F 20 ' ﬁ M :_?

2. Compatibility of Deformations

o]

3. Material Behavior

4. Boundary & Initial conditions

Methods of Structural Analysis
e Force (flexibility) method
e Displacement (stiffness) method

What about other types of structures?

Plate and Shell structures Large Continuum Structures Complex assembly
of components
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Statics: Equilibrium of Forces and Moments

f
Statics for: 't 7 G -
* Point particles AN =( =0

e Rigid bodies

¢ Deformable bodies /]\ VY

1\ Copyright  The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Example ’<—1 m
Consider the frame shown. '

Radius of both pulleys =0.2 m

1. Is the frame statically determinate?

2. Draw the axial force, shear force and bending moment L&
diagram for member AE
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Statics: Equilibrium of Deformable Bodies

Plate and Shell structures Large Continuum Structures Complex assembly
of components

Or even our beloved simply supported beam:
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Concepts of Traction and Stress

In general,
Traction is the distributed force per unit area acting at a point on

any (external) surface of a body or a part of a body.
Traction is a vector represented with a 3x1 matrix in 3D.

Example: Truss member

Note. : Fgc,/’[/El?/IS/)-—;//

Also, Alternate cut

=—C

Stress is a physical quantity that completely characterizes the distributed internal forces per unit area that
develop at a point within a body or a part of a body, at any orientation of the internal surface.

Stress is a tensor and is represented with a 3 x 3 matrix.
(Note: A tensor operates upon a vector to give another vector;

just like a 3x3 matrix multiplied with a 3x1 vector gives another 3x1 vector.)

=l

0 Cauchy Stress-traction relationship
v 0
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Transformation of stress (Change of co-ordinate axes)

Recall that a vector is represented with a 3x1 matrix.
The components of this 3x1 vector depend upon the choice of axes.
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Equilibrium equations in terms of stresses
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Stress Resultants and Equilibrium for Beams

c
¢ |
~ V__Q ~ o~ T
Stress Resultants (Axial force, Shear force, Bending Moment)
Arial foree (V)= f@: - ) A
A
SIhoovy (fwta, C\/)”—f(_t'm)df‘
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Bm? Mot QM) = f@;-@)%(w :Ijlé .
P v
Equilibrium in terms of Stress Resultants > -
Consider a small Ax length of any beam carrying a distributed load. 7
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Concept of Strain

Under the action on external "loads",
any deformable body undergoes
changes in its shape and size.

(i.e. it deforms).

Strain is a physical quantity that
measures these changes in shape and size
at a point in a body.

T e A
xXxample _(
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_ ya | .
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More precisely: Z % D7x
)
1 _ In general Displacements:
- —T= X = - — - 1
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(under small displacements / deformations)
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Compatibility of strains

Displacement-strain relationships

Normal Strains Cro = %'Zu ;G T %—2 / Ce2 :g—f
Shear Strains Cry = Evx = lﬁ ( %—l— a%>
672 - 6%7 = //& (88\; + g\k;’
Exz = Eax = & (%: +%‘/‘:
Shear angle %Q’ = 2 €><7
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Stress-strain relationship (Material behavior) o
One of the simplest material behavior is characterized by the E
linear-elastic Hooke's taw (model). €
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In general a 3D linear-elastic material model is characterized by 2 material constants (properties):

E: Young's Modulus
v : Poisson's Ratio

Note. ) = = Cyy
Exe Vi 7 T
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2D Plane Problems

e Ploane Chreas
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Final Problem Statement of Structural Analysis

Find
. Displaserand’  Lialel ey
. Streda pietd (%)
. Strase field € (%)
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Note:

~/

are not possible to obtain.
e Structural engineers resort to

o make simplifying assumptions,

o obtain approximate solutions to the above PDEs using numerical techniques like the
finite element method.

e For most practical problems, analytical (exact) solutions to the above system of PDEs,
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Structural Mechanics: Beam theory

Kinematic Assumption: Assume that a beam consists of infinitely many RIGID CROSS- SECTIONS
that are connected with a FLEXIBLE STRING (at their centroids).

Under this assumption consider a Ax length of the beam:
J wlx)

| I |
1 7%7 /—r—b

7 \
X Pure v
Bending

~0
ear - — — - -
—t+1—
% A+

Pure
E :ﬁs’ Axial Actual response is some combination of all 3 "modes."

Note:
e The theory that accounts for all 3 modes of deformation above is called the Timoshenko Beam Theory.
This theory is more general and is more suitable for "deep" / "short" beams i.e. beams whose depth/length
ratio is less than 5.
This is because for such beams bending deformations ane small and shear deformations contribute
significantly to the response.

e An alternative theory which neglects the shear deformation is called the Bernoulli-Euler Beam theory.
This theory is applicable only to "long" / "slender" beams whose depth / length ratio is greater than 10.
For such beams, the bending deformations are much larger in comparison to the shear deformations, so

neglecting shear deformations is justified.
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Negligible Shear Deformations Assumption:
If we further assume that shear deformations are negligible, then:
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Note JDAQ = Na.
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A
2
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Finally this leads to the well known - T o = S and -
beam equations: 1 2 J El dA*
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Calculating Deflections

(Ref: Chapter 8)

Sign Convention

M M
Shear: Left Down & Right Up
Moment: Left Counter & Right Clockwise N N
(Smiley: positive) v

o=, Ahe L

A
2R, 20 2 >/+ mzmc«@/mv} =0

w(x) r~

r I
| |
= | o ]
|
L L e(Ax)
AN~ O C L
ZMC';O => ~M~VAM,~TQ\/\—\/QM>/@OA”L)L}.J = v
2 M M + AM
CLav)
> \V = OU\/l V + AV
oAr_ L Ax—
Deflections
Deflected shape (elastic curve) can be sketched by:
e Analyzing the loads and support conditions
e Bending moment diagram (using +/- curvatures and inflection points)
Examples ]7 7 ﬁ ﬂ
4
# T T M) ‘LP 2.
3, ((f@\ /
<f | s¥ | |
2™ I
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Examples v
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} 3 1 !
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Double Integration
Deflected shapes of beams can also be calculated precisely by integrating the governing equation

of beam equilibrium: =
MO - M
ET A
J ()
4 A
71 117 .
_____ - I "b/_P
T7A 777
I f M o € (Stope ab @ point)
ol ct

= (tz):ffMGQG&%’VQ%ﬁ’CZ CDWWD

Note:
e Constants are evaluated using boundary and compatibility conditions at supports or interior points.
e If M(x) diagram is discontinuous or has discontinuous changes in slope, then a single equation will not
be possible for deflections and all segments would have to be integrated separately.

f
le:
Example PL g 7] N J
Fov © < o <1/y o f ¢
L1y 25 Y| Ha L/ 7

l_\
Yyl = ff E'\g(%)dm+c A+ C
S S .

Fov L/y <o < Yo —

Lo vig = \
Yyl = ff M @) dx + 3+ g gt e | //

Yy Ly EL @g(l_)——o
Fov L/g <o < b / /

yeo = [ meya : o &hs,
x) = M () A, + Co 3 C. =0 _
Yo Ly EL ; y[OD -0 @ g’CL/2> = %L/Z_}_)

@%% )= ')
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Example:

EXAMPLE | 8.5

The beam in Fig. 8-13a is subjected to a load P at its end. Determine
the displacement at C. ET is constant.

(b)
Fig. 8-13
EXAMPLE | 8.5 CONTINUED
SOLUTION
Elastic Curve. The beam deflects into the shape shown in
Y ¢ Fig. 8-13a. Due to the loading, two x coordinates must be considered.
¢ ’ \ Moment Functions. Using the free-body diagrams shown in
I l Fig. 8-13b, we have
_ P
’?[Q— ?[Z M1=—Ex1 O0=x;=2a
M —fx + —(x; — 2a)
EM 2 22T 5 n
\/ =Px2_3Pﬂ Za£x2£3a
Slope and Elastic Curve. Applying Eq. 84,
- P
dz‘b’l 2
for xq, El— = —7x
! dx? g
d1}1 P
. = —— +
EI 2 4x¥ G (1)
P o
Elv, = _Exl + Cix; + Cy (2)

‘Copyright £2012 Pearscn Education, publishirg s Prentice Hall
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EXAMPLE | 8.5 CONTINUED

d2
For Xy, E!d—? = Px, — 3Pa
X
dv, P
nratl - +
El = 21% 3Pax; + Cy (3)
By B
Efﬁz = Exg = EP&X% + Cg.r;:_ + C,q, (4)

The four constants of integration are determined using three bound-
ary conditions, namely,v; = Oatx; = 0,v; = Oatxy = 2a,and v, = 0
at x, = 24, and one continuity equation. Here the continuity of slope at
the roller requires dvy/dx; = dv,/dx; at x; = x; = 2a. (Note that
continuity of displacement at B has been indirectly considered in the
boundary conditions, since v; = v, = 0 at xy = x; = 2a.) Applying
these four conditions yields

v =0atx =0; 0=04+0+C,

v = 0at x; = 2a; 0= _%(zalz + Cy(2a) + C;

v = 0atx; = 2a; 0= %(2&}3 = %."'.:1{24:;)2 + C3(2a) + C4

dvi(2a)  dvy(2a)
dX| a dx;

EXAMPLE |8.5 CONTINUED

Solving, we obtain

, -%(2@)2 +C = g(z.a;,2 — 3Pa(2a) + C;

Substituting C5 and Cy into Eq. (4) gives

2, Pol
10Pa? 2P —P A+ X

P .
3E] 2~ EI V() = e 3

~ 6Bl

a 3 Pa
2E]

3 X3 +

L)

The displacement at C is determined by setting x, = 3a. We get

_ P

Vo = E Ans.

Copyright G201 Pearson Bducation, publshing as Prontice Hall

In addition, overall deflected shape and internal stresses and stress resultants have also been calculated.

77

c'lr/f' 723 3,4
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Moment-Area Theorems

An alternative to the double integration method is to use a semi-graphical method involving moment-
area theorems.
Note:
e Useful in situations where there are multiple segments of the beam (with different M/EI functions)
that would lead to several boundary / continuity conditions to be solved for each segment.
e Usually this method doesn't give the slope or deflection directly.
You have to use a geometrical construction in terms of the unknowns to solve for them.

Theorem 1 (Single integration)
The change in slope of the deflected shape (elastic curve) of a beam between two points A and B
is equal to the area under the M/EI diagram between these points.

2
a6 _ ™M = 9(%@>—— Q(%AQ = ™Ml

i EL h ET
p oz lp
A B
o,k 5 GA)L z ten
N7 Pl et (9 s — (- e,,Q)
T/W]/W/\/A\

2

Note: 0 is positive counter-clockwise.

Examples
Slope at the ends of a simply supported
Slope at tip of cantilever with tip load: beam with center point load:
™M M
— =L
= - /A:PVLAGZ%\
/ / / /7>
2°.
0 2
YL L PL
E1 = 16E]
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Theorem 2 (dtc = xc.dO)

For any two points A and B on a beam, the vertical distance between the tangents from A and from

B at a third point C is equal to the 1st moment of area under the M/EI diagram between A and B

taken about point C.

x
< d:
clh, = 2 dB C A T
AN
_ %C d—/@i)d% f//\
58
A <D”_ ez £ Obti
EI OU\ Tangents 'tﬂ/é = tﬁ—
from A and B .
2 £ 7, N, | measuredat C (Hibbeler)
:? O(}tc pu %C (M)dfl
A eErT M/Ef
A
£
ﬂcé“g: Z. <ﬂ) ol
1) %
du\
Examples
P JCL(_)L P
pL J;, 0 L
Jo - N~ v
" P ?/Z? P/Q_‘
—1 MEL PLf ot
e T/W\
el
//‘8/ /T . . ?////////
24/3 2le
oL ML,
- - 2L L L = ¢ =2L [ PL L
VAN %L €<&7> AV L 2 (/L = 2>
A o= P = b= P
- 7 4¢ET
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Example
EXAMPLE |8.9

& c E = 29(10°) ksi, I = 600 in®.
B
- - ) RJ SOLUTION
M/EI Diagram. Fig.8-19b.
(a)
A)@ _{: 24 Elastic Curve. The elastic curve is shown in Fig. 8-19¢. We are
‘t% 'fjam/ % = _//-— required to find 8,. To do this, establish tangents at A, B (the

tB/A at_A and C. Also, the angle ¢ in Fig. 8-19¢ can be found using
M (b is small => @ = tg/4/L 4p This equation is valid sinchis actually very small,
ET 50

R% Determine the slope at point C of the beam in Fig. 8-19a.

LF\'B supports), and C and note that ¢, is the angle between the tangents

at—g;4 can be approximated by the length of a circular arc

,if defined by a radius of L 45 = 24 ft and sweep of ¢. (Recall that s = 6r.)
\ From the geometry of Fig. 8-19¢, we have
Ip/A

\ﬁ S\ N O0c =& = O¢cia=—; —Oca (1)

(b)

! 12 ft lﬂ—i, Moment-Area Theorems. Using Theorem 1, ¢, 4 is equivalent to

EXAMPLE | 8.9 CONTINUED

the area under the M/ET diagram between points A and C; that is,

1 12 k - fit 36 k - ft

Applying Theorem 2, tg, 4 is equivalent to the moment of the area
under the M/ET diagram between B and A about point B, since this is
the point where the tangential deviation is to be determined. We have

[on+ L[ s (251

Il

tan B Ip/a

()
Fig. 8-19

+ %(6 ft)[%(f’ ft)(%)]

4320k - fi?
El

lan A Substituting these results into Eq. 1, we have

_ 4320k-f¢ 36k-ftP 144 k-f?

B, = =
€7 (241t) EI El El
so that
B 144 k - ft?
€ 29(10%) k/in?(144 in?/f%) 600 in*(1 ft/(12)* in*)
= 0.00119 rad Ans.

Copyright C2012 Pearson Education, publishing as Prentice Hall

Note: This method does not give us an expression/equation for the slope or deflection at ALL points of
the beam (as required by the general Problem statement of Structural Analysis), whereas the method of

double integration does.

Nevertheless, one can find extremal values of slopes and deflections using this method, and usually these
are sufficient for Structural Analysis and Design.
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Example

EXAMPLE | 8.11

Determine the deflection at point C of the beam shown in Fig. 8-21a.
E = 200 GPa, I = 250(10% mm*.

SOLUTION

M/EI Diagram. As shown in Fig. 8-21b, this diagram consists of a
triangular and a parabolic segment.

Elastic Curve. The loading causes the beam to deform as shown in

Fig. 8-21c. We are required to find A.. By constructing tangents at A,
LS B (the supports), and C. it is seen that Ac = ¢4 — A'". However, A’
can be related to 1,4 by proportional triangles, that is, A"/16 = 15,4/8
or A" = 2tp 4. Hence

Sm i 8m

| Al Moment-Area Theorem. We will apply Theorem 2 to determine

~Er teya and tg4. Using the table on the inside back cover for the

(b) parabolic segment and considering the moment of the M/E] diagram
between A and C about point C, we have

EXAMPLE |8.11 CONTINUED
tan A
3 1 192 kN -
e = [ m) | L m(-1280m)]

Al’s,u. A’ le/a + B{S m) + sm][%(g m)(—%)}

Ac = tcia — 2y (1)

—

. B
Ac _ 11264kN-m?
- BE
¢ tan C
(© The moment of the M/ET diagram between A and B about point B gives
. m
g -2 tya = [0 [L e~ 25N emY] 208N m

Why are these terms negative? Substituting the results into Eq. (1) yields

A = _11264kN-m* 2(_2{}48kN-m3)
& El El
__T168kN-m’
B El
Thus,
p— ~7168 kN - m*
€7 [200(10%) kKN/m?][250(10%)(10712) m¥]
= —0.143m Ans.

Copyright 0301 Pearsen Education, pulbilihing o Prentics Hall
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Conjugate Beam Analogy

The conjugate beam methed analogy relies simply on the similarities between the governing equations
of beam theory and those of beam equilibrium.

(1) = AV () w,_(7) «<—>M (=) (M) _ B

09,8 £l eI (% dat
V(@) «— (%)
V()= dM () 6 _ &y(>
o M (OL) > \&/‘COL) ﬂ

Normally, for computation of slopes and displacements:

(Double Integration)

Loadi (Statics) Reactions
oading Shear Force Diagram . Slopes
Bending Moment Diagram Displacements
In the Conjugate Beam Analogy: REAL CONJUGATE
we (7 = E/I_GQ 4—
ET
In addition, 6 (%) «1— V() v
Boundary and ¢
Interior conditions y () €— MC(OL) S
Example
Q;l o (o) MEs (OQ
e T /oM
i 7 ﬁ s ‘>
wl An @) ’
V
(o) Ji ]
3
o ¢ EEE e = ) |y, Jotran [ wh_ on)
l Z el GET
V()
Y z > 7
& w %) My = f“‘w@d%)' Aot = ﬂﬁ‘ - g(ﬁ)
_2ET g ze1 8E)
9
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Boundary and Interior conditions for Conjugate Beams

TABLE 8-2
REAL CONJUGATE Real Beam Conjugate Beam
w, () = M (q) ) o v | —
o A=0 . Mm=0 ol
6 (%) <> V(%)
‘ y v =
A=0 M=0
— A roller roller
\jiﬂc) M0
3) #=0 V=0
a=0 M=0
fixed free
4) # v ]
a free M fxed
) " v
A=0 internal pin M=0 hinge
6 v
A=0 internal roller M=0 hinge
7 o o v ———
F o "
Examples internal roller

Figure: tab_08_02

T
T 1T 1

- I\ ! e} - U
M T real bepam N\li‘L'\LLMLate beam
\ Kl,

Figure: 08_24
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Example

EXAMPLE (8.16

Determine the displacement of the pin at B and the slope of each

beam segment connected to the pin for the compound beam shown in
Fig. 8-28a. E = 29(10°) ksi, I = 30in*.

8k L:lk_
C g \ 30 k-1t
" % T
“ %\Uﬁ —121t ‘ 121 T| 151t
\L’?’@’ ! QAQI |
GK real beam e elastic curve
(a) (b)
Fig. 8-28
EXAMPLE |8.16 CONTINUED
i\ VA SOLUTION
C;\)’r o j} 20le- Conjugate Beam. The elastic curve for the beam is shown in
Fig. 8-28b in order to identify the unknown displacement A g and the
' T T slopes (8z), and (Ag)g to the left and right of the pin. Using Table 8-2,
W the conjugate beam is shown in Fig. 8-28¢. For simplicity in calculation,
\J 2K the M/EI diagram has been drawn in parts using the principle of
A %8# JLZIQ superposition as described in Sec. 4-5. In this regard, the real beam is
< l; 2 thought of as cantilevered from the left support, A. The moment

T Q waf diagrams for the 8-k load. the reactive force C, = 2 k. and the 30-k -

f]\ loading are given. Notice that negative regions of this diagram

W W develop a downward distributed load and positive regions have a
distributed load that acts upward.

™

1521
i~~~ EI
| ”“ﬁ‘ ET
1 e AN
: G A
3 —
| Izz&ﬁ |
| A7 1170 |
! o El ] 150
! 20 ft——
e 451
576
—12 ft— EI
conjugate beam external reactions
(c) (d)

Cogryright G331 3 Poarion Education, pullinbing aiPrentice Hall
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EXAMPLE |8.16 CONTINUED

Equilibrium. The external reactions at B’ and C’ are calculated first %
and the results are indicated in Fig. 8-28d. In order to determine e 26
() g. the conjugate beam is sectioned just to the right of B" and the Sft— r: ET

shear force (Vg )g is computed, Fig. 8-28¢. Thus,

225 450 3.6
H2e=t Wele¥ 5 o mm"
228.6 k - ft?
Oe)r= Vel =—"F— (e)
B 2286 k - ft?
[29(10%)(144) k/f*][30/(12)*] fe*
= (L0378 rad Ans. 25
El
The internal moment at B’ yields the displacement of the pin. Thus, St _": h{“«hh %
Mg, 15 ‘j 5
(+EMp = 0; -M +%{5) m@(-;gj} "E(IS) =1 ETBJ:— i
B * B El El . El (Ve ——
3 i 450
2304 k - ft El =
= = — Ef
Ap = Mp El
(0
EXAMPLE |8.16 CONTINUED
B 2304 k - f®
[29(10%)(144) k/ft%][30/(12)] ft*
= —0.381 ft = —4.58 in. Ans.

The slope (#p),, can be found from a section of beam just to the lefr
of B, Fig. 8-28f. Thus,

2286 225 450 36
H2h =8 skt pr * 5w m

{BF}L o {VB')L =0 Ans.
Obviously, Ag = Mp for this segment is the same as previously

calculated, since the moment arms are only slightly different in Figs. 8-28¢
and 8-28f.

Copyright ©2012 Poarson Bducation, publahing as Prentice Hall
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Example:
Determine the slope and deflection at C

using the conjugate beam analogy.

Reactiona : 7, @ 0, 2a

f%%wo(&ffj P~

P(z% LA <o
M) =

%(2&,—9() o LA 200

COW%W/ Bean,, :

O «— \¢
y +— ™M

At C: ,
O(x)=V = Pa
47
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