
c© 2007 by Arun Prakash. All rights reserved.

MULTI-TIME-STEP DOMAIN DECOMPOSITION AND COUPLING METHODS
FOR NON-LINEAR STRUCTURAL DYNAMICS

BY

ARUN PRAKASH

B.Tech., Indian Institute of Technology, 1999
M.S., University of Illinois at Urbana-Champaign, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Civil Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois

Abstract

The need for better and more efficient computational methods to study large-scale cou-

pled physical phenomena has grown significantly over the last couple of decades. Coupled

multi-physics problems are extremely challenging because of the disparity in the length and

time scales that are usually involved. Researchers have devoted significant effort to address

the coupling of multi-physics phenomena in space through techniques such as domain de-

composition and multi-scale methods but a commensurate effort to couple multiple scales in

time is lacking in the current literature.

This dissertation addresses the problem of efficiently coupling multiple time scales for

non-linear dynamic analysis of large structures with complex geometries. Such problems

have been solved, in the past, by discretizing the structural domain in space with finite

elements and using a time-stepping scheme for numerical time integration. However, using

a uniform time step for the entire mesh that meets that stability and accuracy requirements

of all the elements is computationally very inefficient.

Early attempts to overcome this problem used domain decomposition to divide a large

structural mesh into two or more subdomains. This allowed one to formulate multi-time-step

methods where the time step and/or the time stepping scheme could be chosen in accord

with the requirements of individual subdomains. However, multi-time-step methods in the

literature thus far, usually fail to preserve the stability and accuracy of solutions and are

computationally inefficient.

The present multi-time-step coupling method is based on a dual Schur domain decompo-

sition method that uses Lagrange multipliers to enforce the continuity of the solution across

iii

the interfaces between the subdomains. The subdomains can be integrated with different

time steps and/or time stepping schemes. The method was shown to be unconditionally sta-

ble, energy preserving and computationally very efficient. The multi-time-step method has

also been extended for non-linear problems and a recursive coupling method was developed

to couple multiple subdomains with multiple levels of time steps. An efficient parallelization

based on message passing that uses a recursive tree topology for distributing subdomains

between processors is also presented.

iv

To a lifetime of learning mechanics ...

and to my family and friends.

v

Acknowledgements

First, I would like to thank Professor Keith D. Hjelmstad for being an incredible advisor to

me and for teaching me mechanics. I am indebted to him for his guidance and encouragement

through tough times. He has helped me not only shape my career and grow professionally,

but has also had an indelible effect on my personality.

I would also like to thank the distinguished members of my examination committee, Pro-

fessor Michael T. Heath, Professor Robert H. Dodds Jr. and Professor Daniel A. Tortorelli

for their time and effort in going through my work and for their valuable suggestions. A

special thanks is due to Professor Tortorelli for his insightful feedback on a variety of topics

that came up during discussions in our research group meetings.

I am fortunate to be associated with a strong and active research group that has enabled

me to appreciate and explore various problems at the cutting edge of research in computa-

tional mechanics. It has made research and academics an enjoyable experience for me over

the last few years. I thank Dr. Alireza Namazifard, Wei Xu, Kalyanababu Nakshatrala,

Ghadir Haikal, Kristine Cochran, Daniel Turner, Sudhir Singamsethi and other past and

present members of Professor Hjelmstad’s research group for their interest and lively discus-

sions. I particularly enjoyed the numerous occasions on which the Hjelmstads invited us to

their lovely home to spend time with their family and friends.

During the early part of my graduate studies, I came in contact with some researchers

who helped me in various ways to get started on my problem. I thank Dr. Dennis Parsons,

Professor Philippe Geubelle, Professor Amit Acharya, Professor Ertugrul Taciroglu, Dr.

Jason Hales and Dr. Nathan Crane for the same.

vi

I am grateful for the generous support I have received from the Center for Simulation

of Advanced Rockets throughout my graduate studies at Illinois. I thank the staff of the

Computational Science and Engineering department and the Civil and Environmental En-

gineering department for their help with various issues that evolved from time to time.

I cannot thank my family enough for all they have done for me. Without their care and

nurturing, I would not be where I am today. I thank my parents, Dr. Prem Prakash and

Urmila Gupta, who always put the good of their children ahead of their own and provided

us with the best education they could. I thank my sister, Pratibha Gupta, and my brother,

Ravi Prakash, for their love and support. While in Urbana-Champaign, my cousins Dr.

Abhay Vardhan, Dr. Varsha Vardhan and their daughter Mridula also provided me with the

comfort and security of a family away from home.

Last but not the least, I thank all my colleagues and close friends, especially Kapil Dev,

Ashish Jagmohan, Akhil Jain, Nitin Pande, Sanya Johnson, Ghadir Haikal, Kalyanababu

Nakshatrala and Siddhartha Narra with whom I shared the ups and downs of life over the

last few years.

vii

Table of Contents

List of Figures . xi

Chapter 1 Introduction . 1
1.1 Implicit vs. Explicit Time Integration . 3
1.2 Motivation . 4

Chapter 2 Formulation . 7
2.1 Kinematics . 7
2.2 Balance Laws and Equilibrium . 9
2.3 Constitutive Relationships . 11

2.3.1 Hyperelasticity . 13
2.3.2 Small-strain Rate-independent Elasto-plasticity 15

2.4 Initial Boundary Value Problem . 16
2.5 Virtual Work and Weak Form . 17
2.6 Variational Methods and Energy Functionals 19
2.7 Linearization . 20
2.8 Discretization . 23

2.8.1 Spatial Discretization . 23
2.8.2 Temporal Discretization with Newmark Method 33

2.9 Review of Time Integration Schemes . 36
2.9.1 Analysis of Time Integrators . 38
2.9.2 Recent Trends in Time Integration 40

Chapter 3 Domain Decomposition and Coupling Methods 42
3.1 Domain Decomposition Methods . 42

3.1.1 Partitioning Approaches . 43
3.2 Primal Coupling Methods . 45
3.3 Dual Coupling Methods . 52

3.3.1 Finite Element Tearing and Interconnecting - FETI 53
3.3.2 FETI Method for Structural Dynamics 57
3.3.3 Multi-time-stepping for the FETI Method 57

3.4 Preliminary Coupling Methods Investigated 63
3.4.1 Iterative I-E Coupling . 64
3.4.2 GC Multi-time-step Coupling Using Bordered Solution 67
3.4.3 Minimization of Error Approach . 69

viii

Chapter 4 A New Multi-time-step Coupling Method 72
4.1 Another Look at Newmark Time Stepping Scheme 73
4.2 Coupled Equations for Structural Dynamics 75

4.2.1 Conventional FETI . 75
4.2.2 Algebraically Partitioned FETI . 78

4.3 Implementation of FETI Interfaces . 79
4.4 The Multi-time-step Coupling Method . 84

4.4.1 Bordered Solution Procedure . 88
4.4.2 Interface Decoupling and Physical Interpretation 95
4.4.3 Solution Procedure . 100
4.4.4 Final Coupling Algorithm . 104
4.4.5 Starting Procedure . 104

4.5 Stability Analysis . 105
4.6 Numerical Results . 109

4.6.1 The Split SDOF Problem . 109
4.6.2 1-D Fixed-free Bar Problem . 113
4.6.3 2-D Cantilever Beam Problem . 115
4.6.4 Rocket Case with Cracks . 117

4.7 Conclusion . 118

Chapter 5 Extension to Non-linear Systems 120
5.1 Introduction . 120
5.2 Non-linear Multi-time-step Coupling Method 122

5.2.1 Linearization . 124
5.2.2 Solution . 126

5.3 Implementation . 131
5.3.1 Iterative Solution of Interface Problem 134
5.3.2 Final Algorithm . 136

5.4 Modified Newton Coupling Approach . 137
5.5 Results . 140
5.6 Conclusion . 145

Chapter 6 Recursive Coupling for Multiple Subdomains 147
6.1 Introduction . 147
6.2 FETI for Dynamics . 149
6.3 Recursive Implementation of FETI . 152

6.3.1 Solving a General Subdomain in the Hierarchy 156
6.3.2 Initial Computation of Subdomain Matrices 157

6.4 Comparison of Computational Cost . 159
6.5 Effect of Tree Topology . 161
6.6 Multiple Subdomains with Multiple Time-steps 163
6.7 Results . 165
6.8 Parallel Implementation . 168
6.9 Conclusion . 170

ix

Chapter 7 Conclusions and Future Directions 171
7.1 Future Directions . 172

References . 174

Author’s Biography . 183

x

List of Figures

1.1 Axial stress response of a rocket casing with cracks to sudden head-end pres-
sure; Analyzed with 32 subdomains partitioned with METIS; Coupled with
recursive multi-time-step method with a time step ratio 10. 5

2.1 Kinematics of deformation. 8
2.2 Finite element discretization of a structural domain. 24

3.1 Node partitioning. 44
3.2 Element partitioning. 45
3.3 Domain decomposition for finite element tearing and interconnecting. 53
3.4 A split SDOF problem. 64
3.5 1-D bar problem. 65
3.6 End displacement for ∆T/∆t = 100. Stable 65
3.7 End displacement for ∆T/∆t = 3. Unstable 66
3.8 Algorithm comparison. 68
3.9 Comparison of computed interface reactions by using different constraints. . 70

4.1 (a) A partitioned problem domain showing shared nodes. (b) A typical sub-
domain. 76

4.2 (a) Degrees of freedom for the unpartitioned system. (b) Degrees of freedom
partitioned among subdomains. (c) Degrees of freedom for one subdomain. 80

4.3 (a) Shared degrees of freedom for each subdomain. Shaded degrees of freedom
represent constraints. (b) Shared degrees of freedom concatenated for Γb. . 81

4.4 Decomposition of a domain into two subdomains A and B. 82
4.5 Structure of a typical C matrix for subdomain Ωk. 83
4.6 Representation of time steps for the two subdomain case. 85
4.7 Comparison of the GC method with the current multi-time-step coupling

algorithm. 105
4.8 A split SDOF problem. 109
4.9 Split SDOF problem: Velocity response for m = 2;

∆T/∆tcr = 0.5; ∆t/∆tcr = 0.25. 110
4.10 Split SDOF problem: Interface reactions for m = 2;

∆T/∆tcr = 0.5; ∆t/∆tcr = 0.25. 110
4.11 Split SDOF problem: Total energy for m = 2;

∆T/∆tcr = 0.5; ∆t/∆tcr = 0.25; E0 = 2.67× 106. 111

xi

4.12 Split SDOF problem: Velocity response for m = 5;
∆T/∆tcr = 0.3; ∆t/∆tcr = 0.06. 112

4.13 Split SDOF problem: Interface reactions for m = 5;
∆T/∆tcr = 0.3; ∆t/∆tcr = 0.06. 112

4.14 Split SDOF problem: Total energy for m = 5;
∆T/∆tcr = 0.3; ∆t/∆tcr = 0.06; E0 = 2.67× 106 113

4.15 1-D fixed free bar with a step end load. 114
4.16 End displacement response for 1-D fixed-free bar under step load; m = 10 . 114
4.17 Interface reactions for 1-D fixed-free bar under step load; m = 10 115
4.18 2-D cantilever beam with a step end load. 116
4.19 Vertical displacement of the mid point on the free edge for the 2-D beam

problem, m = 10. 116
4.20 Mesh decomposition of the rocket case. 117
4.21 Linear elastic response of cracked rocket case to sudden head end pressure. . 118

5.1 A split SDOF problem with non-linear springs. 140
5.2 Non-linear split SDOF system under step load. 141
5.3 Spring forces and interface reaction for the non-linear split SDOF system

under step load. 142
5.4 A block of pavement material under shear. 143
5.5 Response of a notched beam. 143
5.6 Horizontal displacement response of the free end of the notched beam. . . . 144
5.7 Horizontal velocity response of the free end of the notched beam. 145

6.1 A hierarchy of subdomains. 153
6.2 Subroutine to solve a general node Ω(A,B) in the tree. 157
6.3 Subroutine to build the Y matrices for a general node. 158
6.4 Algorithm for the hierarchical FETI implementation. 159
6.5 An example problem domain. 161
6.6 Full tree. 162
6.7 Sparse tree. 162
6.8 Split SDOF response. 165
6.9 Decomposition of a 3D beam. 166
6.10 Response of fan blades to impact loading. 166
6.11 Domain decomposition of a fan with 6 blades. 167
6.12 Response of a notched beam. 167
6.13 Parallel implementation with 9 subdomains on 4 processors. 168
6.14 Parallelization of recursive subroutines. 169

xii

Chapter 1

Introduction

Dynamics is regarded as the study of objects and systems whose behavior changes with

time. Such systems can be found everywhere, from the smallest sub-atomic scale, governing

the behavior of minute particles, to the grand celestial scale, describing the evolution of the

universe itself. Dynamics of physical systems has been an active research area for several

decades, perhaps, even centuries. Despite significant advances, understanding the dynamics

of most practical systems remains a challenge to this day.

Structural dynamics is the study of time varying response of everyday structures under

dynamic loads. Common examples of such structures are buildings, bridges, dams etc. but

structures can also span a wide range of length scales. Structures can be as small as micro-

electro-mechanical devices (MEMs) or computer chips or even biological cells or as large

as mountain ranges or tectonic plates of the earth’s crust. Even though the governing dif-

ferential equations of structural dynamics are well established, obtaining exact closed form

solutions for the dynamic behavior of most structures is usually not possible. Researchers

have come up with different ways to gain insight into the dynamics of structures by ap-

proximating them with idealized systems. Such idealizations usually involve replacing the

continuous structure with a representative discrete structure.

The finite element method (FEM) is the most widely used tool for discretization. The

basic idea of FEM is to replace a continuous structure with a collection of elements which,

when assembled together into a mesh, closely approximate the original structure. Within

each element, the solution is assumed to be an linear combination of certain shape functions.

The unknown coefficients of these shape functions represent the degrees of freedom (DOFs)

1

of the discretized structure and comprise the solution to be computed.

For linear structural dynamics, the solution is time dependent and is obtained from the

familiar equation of motion:

M Ü (t) + D U̇ (t) + K U(t) = P (t) (1.1)

where U (t), U̇ (t) and Ü (t) represent the nodal displacements, velocities and accelerations

respectively at time t. M , D and K denote the mass, damping and stiffness matrices of

the structure respectively and P is a vector representing loads on the structure. The initial

state of the structure along with appropriate boundary conditions need to be specified to

complete the problem statement.

Structural dynamics is primarily studied with two methods of analysis, namely, the

frequency domain and the time domain. Frequency domain analysis is commonly used when

one is studying the long term steady state behavior of a structure under a sustained smooth

loading. For instance, problems involving wind induced loading on high-rise buildings or

bridges, or machine induced vibrations on a structure, are better suited for frequency domain

analysis. However, for cases where the initial transient response of structure is critical to

the solution, one must conduct a time domain analysis. Examples of such problems are

scenarios involving impact, blast or crash loads on structures. Time domain analysis is also

better suited for problems that are highly non-linear.

Analysis in the time domain is usually conducted by direct numerical time integration

of the 2nd order system of ordinary differential equations (ODEs) (1.1). Most popular time

integration methods in the literature are usually based on finite difference (FD) which leads

to time stepping. One may convert the system (1.1) to a 1st order system with twice the

number of unknowns and use 1st order methods such as the Euler method or Runge-Kutta

method to integrate the same. However, methods such as the Newmark family of schemes

that integrate 2nd order ODEs directly are preferred over the 1st order integrators. Other

2

methods based on variational formulations in time that lead to time-finite-elements or space-

time elements are also continually being researched in the literature.

Time-stepping schemes, usually, advance a known solution at some instant of time ti by a

small increment ∆t, called a time step. This is achieved by enforcing the equation of motion

(1.1), with displacement, velocity and acceleration as the unknowns, at t = ti+1. Difference

formulas are used to express two of the unknowns in terms of the third which is then solved

from the resulting equation. The three unknowns are updated to reflect the state at ti+1

and the process is repeated successively to obtain the response of the structure at following

instants of time.

1.1 Implicit vs. Explicit Time Integration

Time-stepping schemes can broadly be classified into two categories namely, explicit and

implicit. Most commercial codes use either explicit or implicit time integration exclusively

with a uniform time step for the entire mesh. A comparison of the two methods with respect

to their computational characteristics such as solution time per time step, stability and

accuracy can serve as a basis for this choice.

Implicit time integration usually involves the solution a system of equations at each time

step. For the explicit schemes, the system to be solved is usually the diagonal mass matrix,

which can be inverted very easily. If the number of degrees of freedom in the problem are

n then the computational effort required per time step is usually proportional to nα. For

implicit methods, α takes a value between 2 and 3 depending upon the type of solver, whereas

an explicit system can be solved in time proportional to n (α = 1). Thus, for each time step,

implicit schemes, in general, require more computational effort than explicit schemes.

This advantage of the explicit methods is lost when comparing stability characteristics.

A method is said to be stable if the computed solution remains bounded at all times. Explicit

methods, in general, have a stringent requirement, governed by the Courant condition, on

3

the maximum allowable time step for stability:

∆t ≤ ∆tcr =
L

c
(1.2)

where L is a characteristic length of the smallest element in the mesh and c denotes the wave

speed in the material. Clearly, the time step for the entire mesh is restricted by the size of

the smallest element which is a severe disadvantage. Implicit methods, on the other hand,

are usually stable, even for relatively large time steps and some members of the implicit

family are actually unconditionally stable.

Accuracy is the ability of a method to replicate the exact the solution to within certain

quantifiable error. In general, if the error tends to zero as ∆t→ 0, the method is said to be

consistent. For instance if the trunctation error τ at any time t can be expressed as:

|τ (t)| ≤ c∆tk (1.3)

then the scheme is consistent and together with stability, this results in accuracy. k is said

to be the order of accuracy or the the rate of convergence. The explicit central difference

and the implicit constant average acceleration are two of the most commonly used schemes

in practice and are both 2nd order accurate. Other schemes with higher order of accuracy

have also been developed in the literature and are currently being researched.

1.2 Motivation

As mentioned previously, almost all time-stepping schemes are formulated using a uniform

time-step for the entire mesh. For large-scale nonlinear problems with complex geometries

such as crash, impact or blast analysis, the range of element sizes in a mesh usually varies

over several orders of magnitude. Certain parts of the mesh may contain very small elements,

perhaps to capture high stress gradients while large parts of the mesh may still be relatively

4

coarse. Using an explicit or an implicit scheme exclusively with a uniform time-step, for

such problems, is computationally very inefficient. If one were to use an explicit scheme,

the time-step would be restricted by the size of the smallest element in the mesh and it

would take a very large number of steps to compute the response of the structure for the

desired interval of time. On the other hand, using an implicit scheme with a large time-step,

one would not be able to capture, accurately, the response in regions of the mesh with high

gradients with respect to time.

Figure 1.1: Axial stress response of a rocket casing with cracks to sudden head-end pressure;
Analyzed with 32 subdomains partitioned with METIS; Coupled with recursive multi-time-
step method with a time step ratio 10.

An intuitive solution to this problem is to integrate different parts of the mesh with

time-steps and stepping schemes that are appropriate for the requirements of stability and

5

accuracy within the particular regions of the mesh. Researchers have experimented with

several methods to accomplish this goal with limited success. A promising approach adopted

in the present work uses domain decomposition to divide a large finite element mesh into

several smaller parts called subdomains. The decomposition is done to ensure that each

part contains elements with similar requirements with respect to stability and accuracy.

The different subdomains are then solved as independent problems separately, possibly in

parallel, and the individual solutions are coupled together to ensure continuity of the global

solution across interface boundaries between the subdomains. It is shown that the present

approach enables the use of different time-steps and stepping schemes in different parts of

the mesh and still preserves the accuracy and stability of the individual subdomains with

minimal computational overhead associated with coupling.

6

Chapter 2

Formulation

The dynamic behavior of a structure is governed by well known partial differential equa-

tions describing the kinematics of deformation, point-wise equilibrium of the body and the

constitutive material response along with appropriate boundary and initial conditions. Texts

on continuum and structural mechanics [1, 2, 3, 4] provide details of the formulation pre-

sented briefly here.

2.1 Kinematics

In order to formulate the equations describing the time dependent deformation of a

structure, consider a body that occupies a region Ω(t) with boundary Γ(t) at the current

instant of time t as shown in Figure 2.1. Its initial configuration (usually undeformed) at

time t = t0, Ω(t0) = Ω0 ⊆ Rd where d is number of spatial dimensions of the body, is assumed

known. Let the time interval of interest be I = [t0, tF] and the current time t ∈ I. The

motion of each point X in Ω0 is completely described through a time dependent mapping

x = φ(X, t) from the initial configuration to the current configuration. The inverse map

gives X = φ−1(x, t). Note that the same co-ordinate system has been chosen to describe

vectors in both, initial and current, configurations. Standard notation, denoting quantities

in the initial configuration with upper case letters and quantities in the current configuration

with lower case letters, has been adopted.

7

Figure 2.1: Kinematics of deformation.

The displacement in the current configuration is given by

U (X, t) = x−X = φ(X, t)−X = u(x, t) = x−X = x− φ−1(x, t) (2.1)

The velocity is defined as the time derivative of the map φ and is expressed in material and

spatial co-ordinates as:

V (X, t) = φ̇(X, t) =
dφ(X, t)

dt
=

∂φ(X, t)

∂t
=

∂U (X, t)

∂t
=

dU (X, t)

dt
= U̇ (X, t)

= v(x, t) = u̇(x, t) =
du(x, t)

dt
=

∂u(x, t)

∂x

∂x(X, t)

∂t
+

∂u(x, t)

∂t
=

∂u

∂x
v +

∂u

∂t

(2.2)

respectively. Similarly acceleration is defined as the time derivatives of the velocity:

A(X, t) = V̇ (X, t) =
dV (X, t)

dt
=

∂V (X, t)

∂t
= Ü (X, t) = φ̈(X, t)

= a(x, t) = v̇(x, t) =
∂v(x, t)

∂x

∂x(X, t)

∂t
+

∂v(x, t)

∂t
=

∂v

∂x
v +

∂v

∂t
= ü(x, t)

(2.3)

Note that u = U ◦φ−1, v = V ◦φ−1 and a = A ◦φ−1 where ◦ denotes the composition of

functions.

8

An important measure of the deformation is the deformation gradient, defined by:

F (X, t) =
∂x

∂X
⇒ FiI(ei ⊗EI) =

∂xi

∂XI

(ei ⊗EI) (2.4)

where the summation convention is implied on the repeated indices i and I (i, I ∈ [1, d]) and

⊗ denotes the tensor product of two vectors. The explicit dependence of quantities on X

and t will be dropped henceforth for brevity. The polar decomposition of F , (F = F R F U =

F V F R), shows that it contains information about both, the stretching (F U , F V) and rigid

body rotation (F R), components of the deformation. In order to obtain a measure of strain

that is independent of rigid body motion, the right and left Cauchy-Green deformation

tensors is defined as:

C = F T F = (F U)2 ; b = FF T = (F V)2 (2.5)

respectively. The corresponding Green-Lagrangian strain and Almansi-Eulerian strain ten-

sors are defined as:

E =
1

2
(C − I) ; e =

1

2
(I − b−1) (2.6)

2.2 Balance Laws and Equilibrium

Fundamental balance laws include conservation of mass, momentum and energy. The

balance of linear and angular momentum leads to structural equilibrium. A configuration is

said to be in equilibrium if the sum of internal and external forces and moments is zero at

all points of the body in that configuration. The internal forces in a body are characterized

through stress. A convenient expression for stress at a point x in the current configuration is

the Cauchy stress tensor σ(x). The traction (force per unit area) tn acting on a plane normal

to the unit vector n and the Cauchy stress σ, at a point x in the current configuration, are

9

related through the Cauchy formula:

tn = σn where σ = σij(ei ⊗ ej) (2.7)

If the body Ω(t) is in equilibrium, all possible subregions Ωs
t ⊂ Ω(t) must also be in equilib-

rium: ∫
Γs

t

tn da +

∫
Ωs

t

(−ρü + b̄) dv = 0

⇒
∫

Ωs
t

(−ρü + divσ + b̄) dv = 0

(2.8)

where Γs
t denotes the boundary of the subregion Ωs

t , ρ is the density, b̄ is the body force per

unit volume and −ρü is the inertial force obtained using the d’Alembert’s principle. Since

equation (2.8) must hold for all possible subregions Ωs
t , the instantaneous residual equations

for dynamic equilibrium in the current configuration is given by:

r = −ρü + divσ + b̄ = 0 ∀x ∈ Ω(t) (2.9)

where the divergence (div) is taken with respect to the current coordinates x. A similar

equilibrium of moments leads to symmetry of the Cauchy stress σ = σT .

Alternate measures of stress defined on the initial configuration are the first and second

Piola-Kirchhoff stress tensors P and S. The first Piola-Kirchhoff stress tensor is defined such

that the traction TN at a point X in the initial configuration, obtained from the Cauchy

relationship TN = P N , satisfies:

TN dA = tn da ⇒ P N dA = σn da (2.10)

where dA is an infinitesimal area in the initial configuration and da is the corresponding

mapped area in the current configuration. The oriented areas NdA and nda are obtained

10

as vector products: (N1dS1) × (N2dS2) and (n1ds1) × (n2ds2) respectively. The infinites-

imal vectors are transformed as n1ds1 = FN1dS1 and n2ds2 = FN2dS2 and the area

transformation is given by:

n da = (n1ds1)× (n2ds2)

= (FN1dS1)× (FN2dS2) = JF−T (N1dS1)× (N2dS2) = JF−T N dA

(2.11)

where J = det(F). Using the above relations one obtains the definition of the first Piola-

Kirchhoff stress tensor as:

P = JσF−T (2.12)

which is not symmetric. A symmetric measure of stress in the initial configuration is the

second Piola-Kirchhoff stress tensor, defined as:

S = JF−1σF−T (2.13)

Equation (2.9) written in terms of quantities defined on the initial configuration is:

r0 = −ρ0Ü + divP + B̄ = 0 ∀X ∈ Ω0 (2.14)

where ρ0 = ρJ is the initial density and B̄ = b̄J is equivalent body force in initial config-

uration and the two residuals are related as r0 = rJ . The divergence (div) is taken with

respect to initial co-ordinates X.

2.3 Constitutive Relationships

The behavior of materials is governed through constitutive relationships, which in gen-

eral, relate a measure of material response to applied stimuli, such as relating strain to

stress. As yet, it has not been possible to characterize the behavior of any material purely

11

from first principles. Physicists have been actively engaged in state-of-the-art research to

formulate a universal theory to describe the behavior of all matter, space and time but have

not yet succeeded. Till the time such a theory can be realized, if ever, researchers will con-

tinue to characterize material response through empirical relationships based on observed

phenomena. Since an unimaginable number of factors might possibly affect material re-

sponse, such empirical models are usually restricted to certain range of behavior and applied

stimuli represented through internal variables. Important material models that characterize

material behavior for mechanical problems coupled with a variety of physical phenomena

include thermo-mechanical, electro-mechanical, photo-mechanical and magneto-rheological

models. Physical phenomena such as fracture and phase-change are also modeled in con-

stitutive theories. It must be pointed out that any constitutive model must not contradict

any fundamental balance law for the quantities that it is trying to model. For instance, a

thermo-mechanical material model must not violate the second law of thermo-dynamics. In

general, the problem of ensuring consistency of a constitutive model with governing balance

laws remains an open problem.

In structural mechanics we are primarily concerned with stress-strain constitutive rela-

tionships. Basic principles of material behavior such as determinism, locality and frame-

indifference are widely accepted [5, 6, 7]. Haupt [8] classifies constitutive theories into four

categories:

• Rate-independent Elasticity includes Euler-perfect fluids and isotropic-linear-elastic

solids.

• Rate-independent Plasticity includes elastic-perfectly-plastic solids.

• Rate-dependent Elasticity includes Newton-linear-viscous fluids and visco-elastic solids.

• Rate-dependent Plasticity includes visco-plastic solids.

It is, however, conceivable that rate-dependent models would encompass rate-independent

models and that elasticity may be treated as a special case of plasticity. In this scenario,

rate-dependent plasticity may be generalized to cover all classical constitutive theories.

12

2.3.1 Hyperelasticity

A simple rate-independent elastic constitutive theory is hyperelasticity. A material is

said to be hyperelastic if there exists a strain energy density function Ψ̂ which depends only

on the initial and current configurations, Ω0 and Ω(t), of the body and not on the actual

path of the deformation process. In this case, the work done by the stresses at a material

point X (stored as strain energy) can be expressed as:

Ψ̂(F (X, t), X) =

∫ t

t0

P (F (X, t), X) : Ḟ (X, t) dt

⇒ ˙̂
Ψ(F (X, t), X) = P (F (X, t), X) : Ḟ (X, t)

⇒ P (F (X, t), X) =
∂Ψ̂(F (X, t), X)

∂F
⇒ PiI =

∂Ψ̂

∂FiI

(2.15)

Alternatively, the strain energy can be expressed in terms of the second Piola Kirchhoff

stress tensor S and the Cauchy-Green deformation tensor C or the Lagrangian strain tensor

E, signifying its independence from rigid body rotation F R:

Ψ̂(F) = Ψ(C) =

∫ t

t0

1

2
S : Ċ dt =

∫ t

t0

S : Ė dt = Ψ̄(E)

⇒ Ψ̇ =
1

2
S : Ċ = S : Ė = ˙̄Ψ(E)

⇒ S = 2
∂Ψ(C)

∂C
=

∂Ψ̄(E)

∂E

(2.16)

where the explicit dependence on X and t has been dropped for brevity. In addition to the

stress-strain relationship, the rate of change of stress with strain is also needed, as we shall

see in section §2.7. This rate is quantified by the fourth order elasticity tensor C defined as:

C =
∂S

∂E
=

∂2Ψ̄

∂E ∂E
(2.17)

A further simplification of hyperelasticity is isotropy, which states that material proper-

ties are independent of direction. The strain energy density function of an isotropic hypere-

13

lastic material is usually expressed in terms of the invariants of C as Ψ(IC , IIC , IIIC) where

IC = tr(C) is the first invariant, IIC = tr(C2) is the second invariant and IIIC = det(C) = J2

is the third invariant. An example of a linear hyperelastic isotropic material model is the

St. Venant-Kirchhoff model:

Ψ̄(E) =
1

2
λ(tr(E))2 + µtr(E2)

⇒ S = λ(tr(E))I + 2µE

⇒ C = λ I ⊗ I + 2µ I

(2.18)

where λ and µ are the Lamé parameters. I and I ⊗ I are fourth order tensors with compo-

nents IIJKL = δIKδJL and (I ⊗ I)IJKL = δIJδKL respectively.

Often one encounters situations that require modeling of incompressible materials. An

incompressible deformation is characterized by the restriction J = 1. In such cases it is

helpful to split the Cauchy-Green deformation tensor into volumetric and deviatoric parts:

C = CvolCdev = (J
2
3I)(J−

2
3C) (2.19)

and note that det(Cdev) = 1. Now the strain energy density function can be expressed in

terms of the deviatoric part only:

Ψ′(C) = Ψ(Cdev)

⇒ S =
∂Ψ′

∂C
+ pJC−1

(2.20)

where p is an independent variable denoting hydrostatic pressure and is not determinable

through constitutive relationships alone. p is determined from minimization of the energy

subject to the constraint J = 1.

An example of a model used for incompressible rubbers is the generalized Mooney-Rivlin-

14

Ogden material:

Ψ(C) =
M∑

α=0

N∑
β=0

µαβ(IC − 3)α(I2
C − IIC − 3)β (2.21)

where µαβ are positive constants. A special case when M = 1 and N = 0 is called Neo-

Hookean material.

Ψ(C) =
µ

2
(IC − 3) (2.22)

For compressible and almost incompressible materials, a convex function U that depends

only on the volumetric part is added:

Ψ(C) = Ψ′(C) + U(J) (2.23)

An example of a compressible Neo-Hookean material model is:

Ψ(C) =
µ

2
(IC − 3)− µ ln(J) +

λ

2
(ln(J))2

⇒ S = µ(I −C−1) + λ ln(J) C−1

⇒ CIJKL = λC−1
IJ C−1

KL + 2(µ− λlnJ)C−1
IKC−1

JL

(2.24)

2.3.2 Small-strain Rate-independent Elasto-plasticity

For modeling metals, researchers have traditionally used small-strain plasticity with an

additive split of the strain into an elastic and plastic part (ε = εe +εp). Since only linearized

strains are considered, the distinction between stresses in different configuration is dropped.

The yield function for an elasto-plastic material model with isotropic-kinematic hardening

is defined as:

f(σ, α,β) = ‖ξ‖ − (σY + K1α) (2.25)

where σY denotes the uniaxial yield stress, K1 is a positive constant, α and β are internal

variables representing effective plastic strain and back stress respectively. ξ = σ′−β where

15

σ′ is the deviatoric stress σ − 1
3
(tr(σ))I. The evolution equations are given by:

ε̇p = γ
ξ

‖ξ‖
= γ

∂f

∂σ
(2.26)

α̇ = γ (2.27)

β̇ = γ H
ξ

‖ξ‖
(2.28)

σ̇ = C ε̇e = C (ε̇− ε̇p) (2.29)

where γ ≥ 0 and f ≤ 0 implying the Kuhn-Tucker complementarity condition γf = 0. In

addition, we have the persistency condition γḟ = 0 which states that for continual plastic

loading, stress must be on the yield surface.

2.4 Initial Boundary Value Problem

The kinematics, equilibrium and constitutive relationships together result in a system of

partial differential equations governing the behavior of a structural domain. To complete

the problem statement, either an applied traction or an imposed displacement needs to be

specified at each point of the boundary of the entire domain. The imposed displacement

and applied traction boundary conditions are known as Dirichlet and Neumann boundary

conditions respectively.

Let the boundary Γ(t) at any instant of time t be divided into two parts ΓD(t) and ΓN(t),

denoting the Dirichlet and Neumann boundaries respectively, such that ΓD(t)∪ΓN(t) = Γ(t)

and ΓD(t)∩ΓN(t) = φ, the null set. The respective boundary conditions can be specified as:

φ(X, t) = φ̄(X, t) ∀ t ∈ I and ∀X ∈ ΓD(0) (2.30)

tn(x, t) = t̄(x, t) ∀ t ∈ I and ∀x ∈ ΓN(t) (2.31)

where φ̄ and t̄ are given, and n is the outward normal to the Neumann boundary ΓN(t).

16

Finally, the initial boundary value problem of structural dynamics can be stated as

follows: Given the initial configuration Ω0 of a structure, find the map φ(X, t) that satisfies,

the kinematic strain-displacement relationships in section § 2.1, equilibrium equation (2.9)

or (2.14), the chosen constitutive relationships and boundary conditions (2.30) and (2.31).

2.5 Virtual Work and Weak Form

The equations presented in the preceding sections are known as the strong form. Classical

solutions to the strong form of the equations are almost never available, even for very simple

problems. A method for obtaining approximate solutions is facilitated by the weak form

of the equations which is obtained by applying the fundamental theorem of calculus of

variations. For instance, consider the spaces V = {φ : φ ∈ H1(Ω(t)); φ|ΓD(t) = φ̄} and

Ṽ = {ũ : ũ ∈ H1(Ω(t)); ũ|ΓD(t) = 0} (see [9] for details). Define the functional G (φ, ũ) on

the fields φ ∈ V and ũ ∈ Ṽ :

G (φ, ũ) ≡ −
∫

Ω(t)

ũ ·
(
−ρü + divσ + b̄

)
dv +

∫
ΓN (t)

ũ · (tn − t̄) da

=

∫
Ω(t)

ũ · ρü−
(

div(σT ũ)− σ :
∂ũ

∂x

)
− ũ · b̄ dv +

∫
ΓN (t)

ũ · (tn − t̄) da

=

∫
Ω(t)

ũ · ρü + (σ : ∇xũ)− ũ · b̄ dv +

∫
ΓN (t)

−ũ · (σn) + ũ · (tn − t̄) da

=

∫
Ω(t)

ũ · ρü dv +

∫
Ω(t)

σ : ∇xũ dv −
∫

Ω(t)

ũ · b̄ dv −
∫

ΓN (t)

ũ · t̄ da

(2.32)

The expressions in equation (2.32) are obtained using the product rule div(σT ũ) = div(σ) ·

ũ + σ : ∇xũ, the divergence theorem
∫

Ω(t)
div(σT ũ) dv =

∫
Γ(t)

(σT ũ) · n da, symmetry of

the Cauchy stress σ = σT and the Cauchy relation tn = σn.

A direct consequence of the fundamental theorem of calculus of variations is the principle

of virtual work, which states if G (φ, ũ) = 0 for all ũ ∈ Ṽ then φ results in an equilibrium

17

configuration. The virtual work functional is equivalently defined as:

G (φ, ũ) =

∫
Ω(t)

ũ · ρü dv + WI(φ, ũ)−WE(φ, ũ) (2.33)

where WE and WI denote the external and internal virtual work respectively, defined as:

WE(φ, ũ) =

∫
Ω(t)

ũ · b̄ dv +

∫
ΓN (t)

ũ · t̄ da (2.34)

WI(φ, ũ) =

∫
Ω(t)

ε̃ : σ dv (2.35)

ε̃ is the linearized (small) strain tensor corresponding to the virtual displacement ũ:

ε̃ =
1

2
(∇xũ +∇xũ

T) (2.36)

The virtual work functional G can also be expressed in terms of quantities in the initial

configuration:

G (φ, Ũ) =

∫
Ω0

Ũ · ρ0Ü dV + WI(φ, Ũ)−WE(φ, Ũ) (2.37)

where the actual functional form of G (φ, Ũ) may be different from G (φ, ũ) but, for sim-

plicity, we will use the same symbol G for both (since Ũ (X) = ũ(x)) and the distinction

between them will be clear from context. The external virtual work is given by:

WE(φ, Ũ) =

∫
Ω0

Ũ · B̄0 dV +

∫
ΓN 0

Ũ · T̄0 dA (2.38)

The internal work WI can be defined in terms of the first Piola Kirchhoff stress tensor:

WI(φ, Ũ) =

∫
Ω0

(JσF−T F T) :

(
∂Ũ

∂X

∂X

∂x

)
dV =

∫
Ω0

(PF T) :

(
∂Ũ

∂X
F−1

)
dV

=

∫
Ω0

P :
∂Ũ

∂X
dV

(2.39)

18

or the second Piola Kirchhoff stress tensor:

WI(φ, Ũ) =

∫
Ω0

P :
∂Ũ

∂X
dV =

∫
Ω0

(FS) : F̃ dV

=

∫
Ω0

Ẽ : S dV

(2.40)

where

F̃ = ∇XŨ =
∂Ũ

∂X
(2.41)

Ẽ =
1

2
(F T F̃ + F̃ T F) (2.42)

Note that in equation (2.32), only the equation of equilibrium was enforced weakly. One

can obtain alternate mixed formulations by enforcing any or all of the governing partial

differential equations weakly.

2.6 Variational Methods and Energy Functionals

The virtual work functional can always be constructed from the strong form of any set

of partial differential equations. An alternate statement of equilibrium can sometimes be

obtained using energy principles. The kinetic and potential energies are defined as:

T (u̇) =

∫
Ω(t)

1

2
ρ(u̇ · u̇) dv (2.43)

V (u) =

∫
Ω(t)

σ : ε− u · b̄ dv −
∫

ΓN (t)

u · t̄ da (2.44)

respectively. The potential V exists only if the symmetry conditions of the Vainberg theorem

(see Chapter 9, [2]) are satisfied and the formulation is said to have a variational basis. The

Lagrangian L(u, u̇) is defined as

L(u, u̇) = T (u̇)− V (u) (2.45)

19

and its action integral I as:

I =

∫ t

t0

L(u, u̇) dt (2.46)

The Hamilton’s principle of critical action (see [10]) states:

δI = 0 (2.47)

One may verify that the Euler-Lagrange equation:

d

dt
(D2L(u, u̇))−D1L(u, u̇) =

d

dt

(
δL

δu̇

)
− δL

δu
= 0 (2.48)

obtained from the Hamilton’s principle, for the Lagrangian given above, is identical to the

equation of equilibrium (2.9). Another form of the Euler-Lagrange equations can be obtained

by defining the Hamiltonian:

H(u, p) =

∫
Ω(t)

p · u̇ dv − L(u, u̇) = T (u̇) + V (u) (2.49)

where p = ρu̇ denotes linear momentum. This leads to the Hamilton’s equations :

∂u

∂t
=

δH

δp
(2.50)

∂p

∂t
= −δH

δu
(2.51)

where
δH

δu
and

δH

δp
represent the functional derivatives of H (see [10]).

2.7 Linearization

The governing equations of the initial boundary value problem are, in general, non-linear

in the constitutive relationships (material non-linearity) and/or the strain-displacement re-

lations (geometric non-linearity). In order to facilitate an iterative solution using Newton’s

20

method, one needs to linearize these equations.

The functional G (φ, ũ) is linearized around an assumed solution φi, at iteration i, as

follows:

G ((φi + ∆u), ũ) ≈ G (φi, ũ) + DG (φ, ũ)
∣∣∣
φi

[∆u] = 0

⇒ DG (φ, ũ)
∣∣∣
φi

[∆u] = −G (φi, ũ)

(2.52)

where ∆u is the displacement update. The assumed solution for the next iteration i + 1 is

given by φi+1 = φi +∆u and the procedure is repeated until |G (φi∗ , ũ)| ≤ εtol for some final

iteration i∗.

The term DG (φ, ũ)
∣∣∣
φi

[∆u] can be computed from equation (2.32) as follows:

DG (φ, ũ)[∆u] = D

(∫
Ω(t)

ũ · ρü dv

)
[∆u] + DWI [∆u]−DWE[∆u] (2.53)

Note that if the applied loads are not deformation dependent then last term DWE[∆u] does

not contribute. The integrals in the first two terms are computed on a domain that is defor-

mation dependent and in order to simplify the calculation of derivatives for the linearization,

the integrals may be transformed onto domains that are not deformation dependent. Any

prior known (or assumed) configuration of the domain is sufficient for this purpose. Usually,

either the initial undeformed configuration Ω0 or the current assumed configuration Ω(t)i

is chosen, leading to total and updated Lagrangian formulations respectively. Choosing the

total Lagrangian approach, the first term is computed as:

D

(∫
Ω0

ũ · ρü JdV

)
[∆u] =

∫
Ω0

ρ0 ũ ·∆ü dV =

∫
Ω(t)

ρ ũ ·∆ü dv (2.54)

21

The second term in equation (2.53):

DWI [∆u] = D

(∫
Ω0

P :
∂ũ

∂X
dV

)
[∆u]

=

∫
Ω0

∂ũ

∂X
:

(
∂P

∂F
DF [∆u]

)
dV

=

∫
Ω0

∂ũ

∂X
:

(
∂P

∂F

∂∆u

∂X

)
dV

(2.55)

where we have used the definition of the first Piola Kirchhoff stress tensor from (2.12) and

the chain rule to expand ∇xũ. An alternative, symmetric form can be obtained in terms of

the second Piola Kirchhoff stress tensor (2.13) as follows:

DWI [∆u] = D

(∫
Ω0

S : Ẽ dV

)
[∆u]

=

∫
Ω0

(DS[∆u]) : Ẽ + S : (DẼ[∆u]) dV

=

∫
Ω0

Ẽ :

(
∂S

∂E
DE[∆u]

)
dV +

∫
Ω0

S : (DẼ[∆u]) dV

=

∫
Ω0

Ẽ : C∆E dV +

∫
Ω0

S :
1

2

(
(∆F)T F̃ + F̃ T (∆F)

)
dV

(2.56)

where, in addition to the symmetry of second Piola Kirchhoff stress tensor, we have used

the following definitions:

∆F = DF [∆u] = ∇X(∆u) =
∂(∆u)

∂X
(2.57)

∆E = DE[∆u] =
1

2

(
F T (∆F) + (∆F)T F

)
(2.58)

DẼ[∆u] =
1

2

(
(∆F)T F̃ + F̃ T (∆F)

)
(2.59)

Noting that F̃ = ∇Xũ = ∇xũ F and ∆F = ∇X(∆u) = ∇x(∆u) F , the expression (2.56)

22

can now be transformed onto the current assumed configuration Ω(t)i:

DWI [∆u] =

∫
Ω0

1

2
(F T F̃ + F̃ T F) : C 1

2

(
F T (∆F) + (∆F)T F

)
dV

+

∫
Ω0

S : F T 1

2

(
(∇x(∆u))T∇xũ + (∇xũ)T∇x(∆u)

)
F dV

=

∫
Ω0

(F T ε̃F) :
1

J
C(F T ∆εF) J dV

+

∫
Ω0

1

J
(FSF T) :

1

2

(
(∇x(∆u))T∇xũ + (∇xũ)T∇x(∆u)

)
J dV

=

∫
Ω(t)

ε̃ : C ∆ε dv +

∫
Ω(t)

σ :
1

2

(
(∇x(∆u))T∇xũ + (∇xũ)T∇x(∆u)

)
dv

(2.60)

where

∆ε =
1

2

(
∇x(∆u) +∇x(∆u)T

)
(2.61)

Cijkl = J−1FiIFjJFkKFlLCIJKL (2.62)

2.8 Discretization

The virtual work equation (2.32) is expressed in terms of continuous field variables. In

general, one cannot find exact solutions for φ ∈ V that will satisfy the equation for all

ũ ∈ Ṽ . However, approximate solutions can be found by suitably restricting the spaces V

and Ṽ to a linear combination of finite number of functions. This approach is referred to as

the Raleigh-Ritz method. Restricting the spaces, effectively reduces an infinite dimensional

problem to a discrete one that can be solved using the Newton’s update equation (2.52).

2.8.1 Spatial Discretization

The finite element method (FEM) is one of the most common choices for discretization

(see [11],[12]). Using this approach, the structural domain Ω(t) is divided into a number

of elements connected at nodes to form a mesh as shown in figure 2.2. We will denote the

23

number of elements in the mesh by m and the total number of nodes in the mesh by n.

Figure 2.2: Finite element discretization of a structural domain.

Now all the integrals in the equations (2.32) and (2.52) can be transformed into a sum

of integrals over all the elements:

∫
Ω(t)

[·](x) dv =

∫
Ω0

[·](X) dV =
m∑

e=1

∫
Ωe(t)

[·](x) dv =
m∑

e=1

∫
Ωe

0

[·](X) dV∫
ΓN (t)

[·](x) da =

∫
ΓN0

[·](X) dA =
m∑

e=1

∫
Γe

N (t)

[·](x) da =
m∑

e=1

∫
Γe

N0

[·](X) dA

(2.63)

Within each element e, the spaces V and Ṽ are restricted to certain class of functions, usually

polynomials, called shape or basis functions. Finite element basis functions, N̄ e
α(X) on Ω0

or N̂ e
α(x) on Ω(t), are associated with each node α within element e and take the value unity

at node α and zero at all other nodes.

The calculation of individual element integrals can be further simplified by mapping each

element to a single parent element using isoparametric mapping. The domain of the parent

element, denoted by � with boundary � in (ξ1, ξ2, ξ3) coordinates, is the same for all the

elements in the mesh allowing the coordinates X and x to be interpolated using the parent

24

element basis functions Nα(ξ) as:

X =
en∑

α=1

Xe
α Nα(ξ) ; x =

en∑
α=1

xe
α Nα(ξ)

XI = Xe
IαNα ; xi = xe

iαNα

(2.64)

where en is the number of nodes in element e and Xe
α and xe

α represent the nodal co-ordinates

of node α of element e in the initial and current configurations respectively. Summation over

1 ≤ α ≤ en is implied. In conventional matrix form (for 3D: d=3), the same is expressed as:

X = [N] {Xe} ; x = [N] {xe}

[N] =

 · · ·

Nα 0 0

0 Nα 0

0 0 Nα

· · ·

{Xe} =

...

Xe
1α

Xe
2α

Xe
3α

...

{xe} =

...

xe
1α

xe
2α

xe
3α

...

(2.65)

The real, virtual and incremental displacements within element e are also interpolated using

the same basis functions:

U e(X(ξ)) = ue(x(ξ)) = U e
α N̄ e

α(X) = U e
α N̂ e

α(x) = U e
α Nα(ξ) = [N]{U e}

Ũ e(X(ξ)) = ũe(x(ξ)) = Ũ e
α N̄ e

α(X) = Ũ e
α N̂ e

α(x) = Ũ e
α Nα(ξ) = [N]{Ũ e}

∆U e(X(ξ)) = ∆ue(x(ξ)) = ∆U e
α N̄ e

α(X) = ∆U e
α N̂ e

α(x) = ∆U e
α Nα(ξ) = [N]{∆U e}

(2.66)

where U e
α, ∆U e

α and Ũ e
α denote the nodal degrees of freedom (dofs) of node α of element

25

e representing the real, incremental and virtual displacements respectively. The nodal dofs

{U e} of element e are related to the global dofs U through a boolean matrix Ae as:

{U e} = AeU (2.67)

Ae denotes the assembly matrix that picks out the components of {U e} from the vector of

global dofs U . Note that along the Dirichlet boundary ΓD, the components of Ũ are zero

and the components of U are specified.

The element integrals (2.63) can be expressed over the parent element as:

m∑
e=1

∫
Ωe(t)

[·](x) dv =
m∑

e=1

∫
�
[·](x(ξ)) Jxξ d� ≈

m∑
e=1

[∑
k

wk [·](x(ξk))Jxξ(ξk)

]
m∑

e=1

∫
Ωe

0

[·](X) dV =
m∑

e=1

∫
�
[·](X(ξ))JXξ d� ≈

m∑
e=1

[∑
k

wk[·](X(ξk))JXξ(ξk)

]
m∑

e=1

∫
Γe

N (t)

[·](x) da =
m∑

e=1

∫
�N

[·](x(ξ)) JxξF
−T
xξ d�

≈
m∑

e=1

[
�N∑

l

wl [·](x(ξl))Jxξ(ξl)F
−T
xξ (ξl)

]
m∑

e=1

∫
Γe

N0

[·](X) dA =
m∑

e=1

∫
�N

[·](X(ξ))JXξF
−T
Xξ d�

≈
m∑

e=1

[
�N∑

l

wl[·](X(ξl))JXξ(ξl)F
−T
Xξ (ξl)

]

(2.68)

where Gauss quadrature has been used to approximate the integrals with weights and loca-

tions (wk, ξk) for the domain and (wl, ξl) for the boundary. Fxξ and FXξ are given by:

Fxξ =
∂x

∂ξ
=

∂Nα

∂ξj

xe
iα ei ⊗ îj Jxξ = det(Fxξ)

FXξ =
∂X

∂ξ
=

∂Nα

∂ξj

Xe
Iα EI ⊗ îj JXξ = det(FXξ)

(2.69)

where î are the unit vectors for the parent element.

26

In order to discretize the quantities in equation (2.52), computation of F is also required:

F = FiI ei ⊗EI =
∂xi

∂XI

ei ⊗EI = xe
iα

∂Nα

∂XI

ei ⊗EI (2.70)

where
∂Nα

∂XI

and
∂Nα

∂xi

can be computed separately as:

∂Nα

∂XI

=
∂Nα

∂ξk

(
∂XI

∂ξk

)−1

=
∂Nα

∂ξk

(
Xe

Iβ

∂Nβ

∂ξk

)−1

∂Nα

∂xi

=
∂Nα

∂ξk

(
∂xi

∂ξk

)−1

=
∂Nα

∂ξk

(
xe

iβ

∂Nβ

∂ξk

)−1
(2.71)

Note that once a configuration Ω(t)i is assumed, all the quantities above are known and

F = FxξF
−1
Xξ .

Quantities for the updated Lagrangian expressions (2.33), (2.34), (2.35) and (2.60):

∇xũ =
∂ũe

i

∂xj

ei ⊗ ej = ũe
iα

∂Nα

∂xj

ei ⊗ ej

ε̃ =
1

2

(
ũe

iα

∂Nα

∂xj

+ ũe
jα

∂Nα

∂xi

)
ei ⊗ ej

∇x(∆u) = ∆ue
iα

∂Nα

∂xj

ei ⊗ ej

∆ε =
1

2

(
(∆ue

iα)
∂Nα

∂xj

+ (∆ue
jα)

∂Nα

∂xi

)
ei ⊗ ej

(2.72)

In the conventional matrix notation ε̃ and ∆ε are expressed as:

{ε̃} =
[
BUL

α

]
{Ũα} ; {∆ε} =

[
BUL

α

]
{∆Uα} (2.73)

27

where

{ε̃} = vec(ε̃) = [ε̃11, ε̃22, ε̃33, 2ε̃12, 2ε̃23, 2ε̃31]
T

{∆ε} = vec(∆ε) = [∆ε11, ∆ε22, ∆ε33, 2∆ε12, 2∆ε23, 2∆ε31]
T

[
BUL

α

]
=

∂Nα

∂x1

0 0

0
∂Nα

∂x2

0

0 0
∂Nα

∂x3

∂Nα

∂x2

∂Nα

∂x1

0

0
∂Nα

∂x3

∂Nα

∂x2

∂Nα

∂x3

0
∂Nα

∂x1

(2.74)

Similarly quantities required for the total Lagrangian expressions (2.37), (2.38), (2.40) and

(2.56):

F̃ = ũe
iα

∂Nα

∂XI

ei ⊗EI

Ẽ =
1

2

(
FiIF̃iJ + F̃iIFiJ

)
ei ⊗EI =

1

2

(
FiI

∂Nα

∂XJ

+ FiJ
∂Nα

∂XI

)
ũe

iα ei ⊗EI

∆F = ∆ue
iα

∂Nα

∂XI

ei ⊗EI

∆E =
1

2
(FiI ∆FiJ + ∆FiI FiJ) ei ⊗EI =

1

2

(
FiI

∂Nα

∂XJ

+ FiJ
∂Nα

∂XI

)
∆ue

iα ei ⊗EI

(2.75)

where ũe
iα is arbitrary and ∆ue

iα is the unknown to be computed. In the conventional matrix

notation Ẽ and ∆E are expressed as:

{Ẽ} =
[
BTL

α

]
{Ũα} ; {∆E} =

[
BTL

α

]
{∆Uα} (2.76)

28

where

{Ẽ} = vec(Ẽ) = [Ẽ11, Ẽ22, Ẽ33, 2Ẽ12, 2Ẽ23, 2Ẽ31]
T

{∆E} = vec(∆E) = [∆E11, ∆E22, ∆E33, 2∆E12, 2∆E23, 2∆E31]
T

[
BTL

α

]
=

F11
∂Nα

∂X1

F21
∂Nα

∂X1

F31
∂Nα

∂X1

F12
∂Nα

∂X2

F22
∂Nα

∂X2

F32
∂Nα

∂X2

F13
∂Nα

∂X3

F23
∂Nα

∂X3

F33
∂Nα

∂X3

F11
∂Nα

∂X2

+ F12
∂Nα

∂X1

F21
∂Nα

∂X2

+ F22
∂Nα

∂X1

F31
∂Nα

∂X2

+ F32
∂Nα

∂X1

F12
∂Nα

∂X3

+ F13
∂Nα

∂X2

F22
∂Nα

∂X3

+ F23
∂Nα

∂X2

F32
∂Nα

∂X3

+ F33
∂Nα

∂X2

F13
∂Nα

∂X1

+ F11
∂Nα

∂X3

F23
∂Nα

∂X1

+ F21
∂Nα

∂X3

F33
∂Nα

∂X1

+ F31
∂Nα

∂X3

(2.77)

The stress tensors S and σ are assembled into vectors as:

{σ} = vec(σ) = [σ11, σ22, σ33, σ12, σ23, σ31]
T

{S} = vec(S) = [S11, S22, S33, S12, S23, S31]
T

(2.78)

The elasticity tensors C and C can be assembled in matrix form as:

[C] = mat(C) =

C1111 C1122 C1133 C1112 C1123 C1131

C2222 C2233 C2212 C2223 C2231

C3333 C3312 C3323 C3331

C1212 C1223 C1231

SYM C2323 C2331

C3131

(2.79)

Quantities in the Newton update equation (2.52) can now be expressed in terms of the

29

discrete variables above. The right hand side is obtained from equation (2.33) or (2.37):

−G (φi, ũ) ≈ −
m∑

e=1

{Ũ e}T
(
[M e]{Ü e}+ {Qe(U (t))} − {P e}

)
(2.80)

where:

[M e] =
∑

k

wkρ[N]T [N]Jxξ(ξk) =
∑

k

wkρ0[N]T [N]JXξ(ξk) (2.81)

{Qe(U (t))} =
∑

k

wk[B
UL]T{σ}Jxξ(ξk) =

∑
k

wk[B
TL]T{S}JXξ(ξk) (2.82)

{P e} =
∑

k

wk[N]T b̄Jxξ(ξk) +

�N∑
l

wl[N]T t̄JxξF
−T
xξ (ξl)

=
∑

k

wk[N]T B̄0JXξ(ξk) +

�N∑
l

wl[N]T T̄0JXξF
−T
Xξ (ξl)

(2.83)

The directional derivatives on the left hand side of equation (2.52) are given by:

D

(∫
Ω0

ũ · ρ0ü dV

)
[∆u] = D

(∫
Ω(t)

ũ · ρü dv

)
[∆u] =

m∑
e=1

{Ũ e}T [M e]{∆Ü e} (2.84)

DWI [∆u] =
m∑

e=1

{Ũ e}T [Ke]{∆U e} (2.85)

where the tangent stiffness matrix [Ke] = [Ke
M] + [Ke

G] is the sum of the material and

geometric stiffness matrices given by:

[Ke
M] =

∑
k

wk[B
UL]T [C][BUL]Jxξ(ξk) =

∑
k

wk[B
TL]T [C][BTL]JXξ(ξk) (2.86)

[Ke
G] =

∑
k

wk[G
UL]Jxξ(ξk) =

∑
k

wk[G
TL]JXξ(ξk) (2.87)

30

The geometric stiffness components [GUL] and [GTL] are given by:

[G] =

. . .

.

[Gαβ]
. . .
.

; [Gαβ] =

Gαβ 0 0

0 Gαβ 0

0 0 Gαβ

 (2.88)

where

GUL
αβ = σij

1

2

(
∂Nβ

∂xi

∂Nα

∂xj

+
∂Nα

∂xi

∂Nβ

∂xj

)
GTL

αβ = SIJ
1

2

(
∂Nβ

∂XI

∂Nα

∂XJ

+
∂Nα

∂XI

∂Nβ

∂XJ

) (2.89)

These expressions for the geometric stiffness components are obtained from the second term

in the expressions (2.56) and (2.60):

S :
1

2

(
(∆F)T F̃ + F̃ T (∆F)

)
= SIJ

1

2

(
(∆F)iIF̃iJ + F̃iI(∆F)iJ

)
= SIJ

1

2

(
(∆u)e

iβ

∂Nβ

∂XI

ũe
iα

∂Nα

∂XJ

+ ũe
iα

∂Nα

∂XI

(∆u)e
iβ

∂Nβ

∂XJ

)
= ũe

iα

[
SIJ

1

2

(
∂Nβ

∂XI

∂Nα

∂XJ

+
∂Nα

∂XI

∂Nβ

∂XJ

)]
(∆u)e

iβ

(2.90)

σ :
1

2

(
(∇x(∆u))T∇xũ + (∇xũ)T∇x(∆u)

)
= σij

1

2

(
(∆u)e

kβ

∂Nβ

∂xi

ũe
kα

∂Nα

∂xj

+ ũe
kα

∂Nα

∂xi

(∆u)e
kβ

∂Nβ

∂xj

)
= ũe

kα

[
σij

1

2

(
∂Nβ

∂xi

∂Nα

∂xj

+
∂Nα

∂xi

∂Nβ

∂xj

)]
(∆u)e

kβ

(2.91)

The FEM discretization leads to the following semi-discrete form of the principle of

virtual work (2.33) and (2.37):

G (U , Ũ) ≈ Ḡ (U , Ũ) = ŨT R(U (t)) = 0 ∀Ũ ∈ Rnd (2.92)

31

where R(U (t)) and U (t) represent the global residual and nodal displacement vectors re-

spectively and nd is the total number of dofs. Satisfying the principle of virtual work now

becomes a matter of solving a system of non-linear ordinary differential equations (ODEs):

R(U (t)) = MÜ (t) + Q(U (t))− P (t) = 0 (2.93)

where M , Q and P represent the global mass matrix, internal and external force vectors

respectively obtained by assembling the element contributions:

M =
m∑

e=1

AeT

[M e]Ae

Q(U (t)) =
m∑

e=1

AeT {Qe(U (t))}

P =
m∑

e=1

AeT {P e}

(2.94)

For linear problems, the internal force, in general, depends on both displacement and velocity

and can be obtained as:

Q(U̇ , U) = D U̇ + K U (2.95)

where K =
∂Q

∂U
denotes the stiffness matrix and D =

∂Q

∂U̇
denotes the damping matrix.

The stiffness matrix K is obtained by assembling the elemental contributions:

K =
m∑

e=1

AeT

[Ke]Ae (2.96)

Ideally, the damping matrix should also be obtained from a rate-dependent constitutive

relationship in a manner similar to the stiffness matrix, but other forms of damping such

as Raleigh damping D = α1M + α2K (α1, α2 ∈ R) are also commonly employed. The

32

resulting system of ordinary differential equations (ODEs) for a linear problem is:

M Ü (t) + D U̇ (t) + K U(t) = P (t) (2.97)

In addition, one needs initial conditions and boundary conditions to complete the problem

statement:

U (0) = U0 U̇ (0) = V0

U (t) = Ū (t) on ΓD(t) ∀t ∈ [t0, tF]

(2.98)

where U0 and V0 are the specified initial displacement and velocity vectors respectively

and Ū denotes the specified displacement for the Dirichlet boundary condition (2.30) from

section §2.4.

2.8.2 Temporal Discretization with Newmark Method

The semi-discrete system of ordinary differential equations (2.93) or (2.97) are solved

approximately by numerical time integration algorithms. Most commonly, a finite difference

(FD) scheme is used to enforce the equations at discrete instants of time. The time interval

of interest I = [t0, tF] is divided into N time steps of sizes ∆ti for 1 ≤ i ≤ N and the

equations are enforced at discrete instants of time tn given by tn = t0 +
∑n

i=1 ∆ti with

t0 = 0 and tN = tF . Assuming that the complete state of the system is known at the

instant tn, advancing the state by the time step ∆tn+1 to obtain the state at tn+1 is known

as time-stepping.

The fully discrete system of algebraic equations at tn+1 can be written as:

Rn+1(Un+1, U̇n+1) = MÜn+1 + Qn+1(Un+1, U̇n+1)− Pn+1 = 0 (2.99)

In addition, two more equations are needed to approximate the time derivatives for velocity

33

U̇n+1 and acceleration Ün+1. The Newmark family of time integration schemes [13] are

widely used in structural dynamics to approximate this relationship as:

U̇n+1 = ˆ̇Un+1 + ∆t γ Ün+1 ; ˆ̇Un+1 = U̇n + ∆t (1− γ) Ün (2.100)

Un+1 = Ûn+1 + ∆t2 β Ün+1 ; Ûn+1 = Un + ∆t U̇n + ∆t2 (1
2
− β)Ün (2.101)

where γ and β are algorithmic parameters. The fully discrete, non-linear systems of algebraic

equations (2.99), (2.100) and (2.101) are solved using the Newton’s method. An initial guess

(iteration i = 0) for the state at tn+1 is assumed as:

Ü 0
n+1 = Ü ∗

n (2.102)

U̇ 0
n+1 = U̇ ∗

n + ∆t
[
(1− γ)Ü ∗

n + γ Ü 0
n+1

]
(2.103)

U 0
n+1 = U ∗

n + ∆t U̇ ∗
n + ∆t2

[
(1

2
− β)Ü ∗

n + β Ü 0
n+1

]
(2.104)

from the converged iteration i = ∗ of the previous time step tn. The linearized system of

equations for the Newton update:

M ∆Ün+1 + Di
n+1 ∆U̇n+1 + Ki

n+1 ∆Un+1 = −Ri
n+1(U

i
n+1, U̇

i
n+1) (2.105)

∆U̇n+1 = ∆t γ ∆Ün+1 (2.106)

∆Un+1 = ∆t2 β ∆Ün+1 (2.107)

can be solved for ∆Ün+1, ∆U̇n+1 and ∆Un+1 and the state for iteration i+1 can be updated

using:

Ü i+1
n+1 = Ü i

n+1 + ∆Ün+1 (2.108)

U̇ i+1
n+1 = U̇ i

n+1 + ∆U̇n+1 (2.109)

U i+1
n+1 = U i

n+1 + ∆Un+1 (2.110)

34

This iterative process is repeated until the residual ‖Ri
n+1(U

i
n+1, U̇n+1)‖ is less than some

tolerance εtol. In contrast, the system of equations for a linear structural dynamics problem

is:

MÜn+1 + D U̇n+1 + K Un+1 = Pn+1 (2.111)

together with the Newmark relations (2.100) and (2.101). This system can be solved for

Ün+1 from the equation

M̃ Ün+1 = Pn+1 −D ˆ̇Un+1 −KÛn+1 (2.112)

where M̃ =
(
M + γ∆tD + β∆t2K

)
(2.113)

without the need for iteration.

Note that to start the time stepping one must compute the initial acceleration Ü0 by

solving the residual equation at t0:

MÜ0 = P0 −Q(U0, V0) (2.114)

Newmark schemes are divided into two basic classes namely explicit and implicit. For

explicit schemes usually β = 0 and the displacement is predicted solely on the basis of known

values from the previous time step. Implicit schemes have β > 0 and require one to solve a

system of equations at every time step. Explicit central difference with (β = 0; γ = 1
2
) and

implicit constant-average-acceleration (β = 1
4
; γ = 1

2
) are the two most widely used schemes

of the Newmark family. Other values of β = 1
6

and 1
12

result in the linear acceleration and

the Fox-Goodwin schemes respectively.

An alternative implementation of the Newmark method to solve directly for Un+1 can

35

also be obtained:

1

∆t2
MUn+1 = Pn −

(
K − 2

∆t2
M

)
Un −

(
1

∆t2
M

)
Un−1 (2.115)(

K +
4

∆t2
M

)
Un+1 = Pn+1 + M

(
4

∆t2
Un +

4

∆t
U̇n + Ün

)
(2.116)

are the systems of equations for the explicit central difference and the implicit constant

average acceleration schemes respectively.

2.9 Review of Time Integration Schemes

Traditionally ODEs involving time derivatives have been treated as initial value problems

(see Chapter 9, [14]). A general system of ODEs can be written in the form:

{ẏ} = {f (t, {y})} (2.117)

where {y} is vector of quantities y1, y2, ... yn which themselves may be vectors. A system

of ODEs of any order may be converted into the form (2.117) by introducing new variables

yn+1 = ẏn. In particular, the system of ODEs (2.93) and (2.97) are of second order and can

be converted into first order form (2.117) by substituting y1 = U and y2 = U̇ .

There are a variety of methods available in the literature for solving a system of ODEs

with FD schemes based on Taylor series expansions of the unknown quantities. One such

method as the Euler method:

{y}n+1 = {y}n + ∆t {ẏ}n+α

{ẏ}n+α = [(1− α){ẏ}n + α {ẏ}n+1]

(2.118)

Substituting expressions (2.118) into equation (2.117), one can solve for {y}n+1 or {ẏ}n+α

depending upon the implementation. The Euler method is a particular one-step case of a

36

more general family of methods known as Linear Multi-step (LMS) methods (see Chapter

9, [11]). LMS methods allow one to use information from several previous time-steps (tn−k,

tn−k+1 ... tn) to compute the next state at tn+1:

k∑
i=0

[αi{y}n−i+1 + ∆t βi{f (tn−i+1, {y}n−i+1)}] = 0 (2.119)

where αi and βi are algorithmic parameters. Another class of schemes based on FD are

the Runge-Kutta Methods which approximate the effect of the derivatives ẏk by evaluating

the function f at several locations within the time step tn to tn+1. A popular choice is the

fourth-order accurate Runge-Kutta method:

{f1} = ∆t {f(tn, {y}n)}

{f2} = ∆t {f(tn +
∆t

2
, {y}n +

{f1}
2

)}

{f3} = ∆t {f(tn +
∆t

2
, {y}n +

{f2}
2

)}

{f4} = ∆t {f(tn + ∆t, {y}n + {f3})}

{y}n+1 = {y}n +
1

6
[{f1}+ 2{f2}+ 2{f3}+ {f4}] + O(∆t5)

(2.120)

The time step ∆t can be adapted using an approximate error measure by re-solving for

{y}n+1 by taking two steps of ∆t/2 each and comparing the results.

In structural dynamics, however, methods that directly integrate second order ODEs

are preferred over the solvers for the first order ODEs since they require less storage and

compute the desired quantities directly. Such methods are also abundant in the literature.

One may refer to the texts by Hughes (Chapter 9, [11]), Zienkiewicz and Taylor (Chapter

18, [12]) and Bathe [15] for a summary and analysis of methods such as the Houbolt method,

Wilson-θ method, Park’s method, Generalized Newmark methods etc.

37

More recently, Chung & Hulbert [16] presented a Generalized-α method:

M Ün+1−αm + K Un+1−αf
= Pn+1−αf

(2.121)

(·)n+1−α = (1− α)(·)n+1 + α(·)n (2.122)

which has controllable numerical dissipation to damp out artificial high-frequency oscillations

in the response. αm = αf = 1/2 gives the second order accurate, unconditionally stable

midpoint rule. Several other algorithms such as HHT-α [17], θ-Collocation schemes, WBZ-α

[18] are contained in this method as special cases.

2.9.1 Analysis of Time Integrators

Traditionally, the performance of time integrators, with respect to stability and accuracy,

is usually studied for linear or linearized systems. For linear systems, one can use modal

decomposition to reduce the global coupled nd equations to nd independent scalar equations

through the generalized eigen-value problem:

[K −ΛM]Φ = 0 (2.123)

where Λ is a diagonal matrix of the square of the frequencies ω2
i with the corresponding eigen-

modes φi contained in the columns of the matrix Φ. Each scalar equation can be integrated

using a time-stepping scheme of interest to get a relation between the state xn = {u̇n, un}T

and the state xn+1 = {u̇n+1, un+1}T :

xn+1 = Axn + Ln (2.124)

where A is the amplification matrix. The condition for stability is that the maximum eigen-

value (spectral radius) ρ(A) ≤ 1. In order to study the accuracy of a method, one can

38

substitute the exact continous solution which, in general, does not satisfy the discrete equa-

tion (2.124) and one gets a residual error term:

x(tn+1) = Ax(tn) + Ln + ∆t τ (tn) (2.125)

where τ (t) is the called the local truncation error. Subtracting equation (2.125) from (2.124)

one obtains the error equation:

e(tn+1) = A e(tn)−∆t τ (tn) (2.126)

which after successive substitution for e(tn) e(tn−1) ... e(t0) leads to the general error

equation:

e(tn+1) = An+1 e(t0)−
n∑

i=0

∆tAi τ (tn−i) (2.127)

If e(t0) = 0 and ρ(A) ≤ 1 then the error estimate reduces to:

e(tn+1) ≤ tn max|τ (t)| (2.128)

The expression for τ (t) is obtained by comparing Taylor series expansions of u̇n(t) and u(t)

around tn and tn+1 respectively. If |τ (t)| ≤ c∆tk where c is independent of ∆t and k ≥ 1 then

the scheme is said to be consistent. Stability together with consistency results in accuracy

or convergence and k is the called the order of accuracy or the rate of convergence.

Using this analysis one concludes that Newmark-β methods are 2nd order accurate for

γ = 1/2. Trapezoidal rule is unconditionally stable and the time step is restricted only by

accuracy requirements. The stable time step for the explicit Central difference method is

given by the Courant condition:

∆t ≤ ∆tcr =
2

ωmax

(2.129)

39

where ωmax is the highest undamped natural frequency. For most practical meshes, this is

rarely known so an approximation based on the highest undamped natural frequency of its

constituent elements ωel
max is adopted. It can be proved [11] that ωel

max > ωmax so replacing

ωmax by ωel
max in (2.129) results in a conservative estimate for the stable time step. ωel

max can

be computed for most elements as:

ωel
max =

2c

L
(2.130)

where c is the wave speed given by
√

E/ρ where E is the Young’s Modulus, ρ is the density

and L is some characteristic length associated with the element. Substituting (2.130) into

(2.129) one obtains the estimate (1.2).

2.9.2 Recent Trends in Time Integration

Researchers in the field of time integration continue to investigate and develop methods

that have better properties such as stability, accuracy with respect to certain underlying

mathematical structure and computational efficiency. A very brief list of some works worth

note is presented.

Simo and co-workers [19, 20, 21] developed Energy, Momentum, Symplectic form preserv-

ing integrators. They have shown that the mid-point rule exactly conserves energy and the

norm of the angular momentum but fails to conserve the direction of the angular momentum

vector and propose alternative family of algorithms which conserve total energy and total

angular momentum. Armero and Romero [22, 23] extended this energy-momentum method

to include controllable numerical dissipation.

Discrete Variational integrators were introduced by Veselov [24] and studied further by

Marsden and co-workers [25]. The text by Hairer [26] provides extensive literature on nu-

merical and variational integrators from a variety of fields. Kane et al. [27] provide an

introduction to the variational integrators and show that the Newmark family of algorithms

40

is variational. Central Difference (γ = 1/2, β = 0) is symplectic and momentum preserving.

They also state that energy-momentum algorithms proposed by Simo and others generally

fail to be symplectic. Lew, Ortiz, Marsden and West [28] have extended variational integra-

tors to elasto-dynamics and introduced the concept of asynchronous variational integrators

(AVI). This allows individual elements to be integrated with different time steps and leads to

a formulation that resembles spacetime formulations. The AVI corresponding to the explicit

central difference can be integrated element-wise and leads to efficient computation, but in

general, implicit AVIs are coupled in time and lead to huge computational costs.

Researchers have also studied spacetime formulations using time-discontinuous Galerkin

finite elements in time. Building on the work of Johnson [29], Hughes and Hulbert [30, 31]

extended the idea of space-time finite elements to elasto-dynamics. Li and Wiberg [32],

Mancuso and Ubertini [33] and Haber and co-workers [34] have also contributed to this area.

Betsch and Steinmann [35] have developed time finite elements and compared the same

with Energy-Momentum and Variational integrators. Tamma and co-workers [36] have de-

veloped a methodology to construct general time integration operators that lead to certain

desired properties of the discrete integrator.

41

Chapter 3

Domain Decomposition and Coupling
Methods

Large-scale problems commonly involve elements with sizes varying over several orders of

magnitude. The choice of a particular time-stepping scheme and time-step size that would be

suitable for the entire mesh in such cases is very difficult. In a large mesh, it is usually easier

to identify zones of elements with similar time step requirements. A coupled approach based

on domain decomposition (DD) that facilitates the use of different time stepping schemes

and/or time steps in different regions of a mesh while preserving the global accuracy and

stability of the solution is the natural way to solve large-scale problems.

Using domain decomposition, a large mesh can be divided into several subdomains de-

pending upon element sizes and time step requirements. For dynamics, implicit integration

can be used for those subdomains of the mesh where the time step is not limited by solution

accuracy and explicit integration can be used elsewhere to save computational time. Since

actual time-steps can vary widely between different subdomains, the computational overhead

involved with coupling them bears greatly on the efficiency of this approach.

3.1 Domain Decomposition Methods

Historically domain decomposition (DD) methods have been used to solve coupled multi-

field problems such as fluid-structure interaction (FSI). However, recently, with the advent of

parallel computers, researchers have started using DD methods to divide their computation

into multiple smaller problems which can be distributed over several processors and solved

in parallel. The text by Toselli and Widlund [37], the survey article by Fragakis and Pa-

42

padrakakis [38] and several conference proceedings [39] provide a good summary of various

DD methods in the literature.

A basic classification of DD methods is done into overlapping and non-overlapping DD

methods. As the name suggest, overlapping DD methods divide the problem domain into

subdomains that have a partial overlap between them such as the Schwarz alternating

method [40]. The subdomains are divided into two groups which are solved one at a time

using boundary conditions from the other. The process is repeated until the solution in

the overlap converges. The presence of an overlap between the subdomains usually helps in

stability of such coupling methods. Non-overlapping methods lead to interfaces of a lower

dimension between subdomains. A coarse problem on the interface is solved to enforce

the continuity of the solution across these interfaces. The discussion in this document is

restricted to non-overlapping DD methods.

Non-overlapping domain decomposition methods are commonly found in structural anl-

ysis like the substructuring techniques [41] based on the Schur complement approach [42].

Substructuring falls under the class of methods commonly known as primal Schur comple-

ment methods where the interface variable for the coarse problem is a primal variable such

as the displacement, velocity or acceleration. Another primal Schur complement method

is the balancing domain decomposition (BDD) method [43] where the coarse problem is

solved iteratively using a preconditioned conjugate gradient (PCG) method for better con-

vergence. An alternative to the primal method is the dual Schur complement method where

the variable for the interface problem is a dual variable such as inter-subdomain traction or

a Lagrange multiplier. Dual Schur complement methods will be discussed in greater detail

in the following sections.

3.1.1 Partitioning Approaches

In structural dynamics, researchers have used non-overlapping methods to couple implicit

and explicit schemes within the same mesh to avoid using a very small time step in the fine

43

regions of the mesh. Such approaches use either node partitioning or element partitioning

to divide the mesh into subdomains.

In node partitioning, the variables associated with each node are taken to be either

explicit or implicit as depicted in figure 3.1. The interface elements, associated with both

Figure 3.1: Node partitioning.

implicit and explicit nodes are responsible for coupling and have to be treated separately

from the normal explicit and implicit elements. This procedure amounts to simply dividing

the system matrix into disjoint halves with the off diagonal terms representing the interface

elements. Node partitioning, in general, results in complex coupling algorithms which often

include additional book-keeping for the interface elements and component systems which

are asymmetric and hence more expensive to solve. In a particular case [44], this method

requires the use of a zone of interface elements where the size of this zone grows with the

ratio of the time steps between the subdomains. The situation is further complicated if there

are interface elements which are shared by more than two subdomains as might be the case

in 2-D and 3-D problems. In addition, computational overheads are large if the interface has

to be modified continuously as in the case of adaptive mesh refinement. Hence this approach

is not suitable for coupling explicit and implicit schemes for a large time step ratio between

the subdomains.

In element partitioning, the structure is divided into two or more subdomains and all the

elements in a particular subdomain are treated either explicitly or implicitly. The boundary

between any two subdomains comprises shared nodes as shown in figure 3.2. The component

system matrices can be assembled from the elements of the corresponding subdomains where

44

Figure 3.2: Element partitioning.

the overlap represents shared nodes which couple the individual solutions together. Coupling

ensures continuity of the solution across the interface and equilibrates tractions between the

subdomains. Element partitioning can handle shared nodes with more than two subdomains

easily because the component system matrices are still assembled the same way. One may

also use separate existing codes for solving different subdomains and write a small additional

subroutine for coupling. Another important advantage of this method is that the interface

can be moved easily by simply changing a few elements from explicit to implicit and vice

versa. The process of subdomain selection may also be automated based on some set criterion

such as element size which is beneficial in adaptive mesh refinement. As one adaptively

refines the mesh, the selection of different zones can be done automatically without human

intervention.

3.2 Primal Coupling Methods

In literature one finds several methods for coupled analysis that use primal substructur-

ing. Most coupling methods based on substructuring are designed using a uniform time step

for all the subdomains. Such methods, often called mixed time or implicit-explicit (I-E)

integration methods, use the same time step throughout the mesh but different integration

schemes in different subdomains. For example, implicit schemes are used for subdomains

with stiff meshes to avoid the Courant time step limit and explicit integration is used for

subdomains with flexible meshes to reduce computational cost. This approach is usually

adopted for hyperbolic problems like dynamic structure-media interaction where the stiff

45

structural mesh is integrated implicitly and the flexible media mesh is integrated explicitly.

However, as discussed earlier, for large complex meshes this approach is inadequate and one

needs to use different time steps in different subdomains.

Multi-time-step and Subcycling methods allow the use of different time steps in different

subdomains. Substructuring based multi-time step and subcycling methods usually lead to

complex procedures for time step ratios more than one. Moreover, the stability and accuracy

analysis for such methods is substantially more involved.

I-E finite elements: Hughes and Liu [45] developed a coupling method that uses el-

ement partitioning and an explicit predictor-corrector scheme constructed from an implicit

Newmark scheme. In this method, the acceleration is computed from the modified equation

of motion as follows:

MÜn+1 + C ˆ̇Un+1 + KÛn+1 = Pn+1 (3.1)

which is used to update the displacement and velocity vectors using the Newmark relations

(2.100) and (2.101). The I-E algorithm is then formulated using another modified equation

of motion:

MÜn+1 + CIU̇n+1 + CE ˆ̇Un+1 + KIUn+1 + KEÛn+1 = Pn+1 (3.2)

which is solved for Ün+1 and the displacement and velocity vectors updated using Newmark

relations.

The authors conducted a stability analysis using the energy method (see Chapter 9, [11])

for both, the explicit predictor-corrector scheme and the I-E scheme. They concluded that,

for the explicit predictor corrector method, the limiting time step was inversely proportional

to the damping. The I-E method reduced to the coupling of central difference and average

acceleration methods with limiting time step in the explicit subdomain governed by the

46

Courant limit for the undamped case. These analytical results were verified in [46] and

extended the method for non-linear systems in [47].

A proof of convergence was given in [48] showing that the norm of the error remained

bounded and the rate of convergence for undamped systems with γ = 1
2

was 2nd order. 2nd

order convergence could also be achieved for damped systems with additional modifications.

Another improvement of the I-E method was proposed in [49] to control numerical dissipation

of the unwanted high frequency oscillations using a method similar to the HHT-α method

[17]. Belytschko and Lu [50] presented a general methodology of stability analysis for the

same using Fourier methods.

Mixed-Time I-E finite elements: Liu and Belytschko [51] outlined an mE-I partition

where the implicit elements are updated once using a big time step ∆T and the explicit

elements are updated m times using a small time step ∆t where ∆T = m∆t. The predictor

corrector algorithm developed by Hughes and Liu [45] was used for explicit computations

and the Newmark method for implicit computations. Stability was verified numerically.

I-E mesh partitions: Belytschko and Mullen [44] proposed an I-E coupling algorithm

using node partitioning. In this method, the explicit partition is updated first followed by the

implicit partition. The implicit scheme uses the computed displacements from the explicit

nodes in the interface elements to correctly update the implicit nodes:

 ME 0

0 M I

 ÜE

n+1

Ü I
n+1

+

 KEE KEI

KIE KII

 UE

n+1

U I
n+1

 =

 P E
n+1

P I
n+1

 (3.3)

The central difference scheme (2.115) applied to the explicit partition (first row above) for

time step tn gives:

UE
n+1 = 2UE

n −UE
n−1 −∆t2ME−1

(P E
n −KEEUE

n −KEIU I
n) (3.4)

This solution for the explicit partition UE
n+1 is then used for the constant average acceleration

47

method in the implicit partition as:

(
M I + β∆t2KII

)
Ü I

n+1 = P I
n+1 −KIEUE

n+1 −KIIÛ I
n+1 (3.5)

In this manner, the solution is advanced one step at a time. Note that this procedure has to

be modified to include more interface elements for the case of time step ratio > 1. Belytschko

and Mullen [52] carried out a stability analysis of the method for a time step ratio of 1 using

the energy method (see Chapter 9, [11]) and concluded that the procedure is stable if the

Courant limit is satisfied for the explicit partition.

Mixed and Multi-time Methods: Belytschko, Yen and Mullen [53] described E-E,

I-E, Em-E and I-I partitions using linear multi-step (LMS) formulae of the form:

Un+1 = β0Ün+1 + hu
n for implicit

Un+1 = β1Ün + α1Un + hu
n−1 for explicit

(3.6)

where h vectors depend only on the solution computed at earlier time steps. They show

that E-E partitions can be computed in any order since the next state depends only on the

previous time steps, however, for I-E partitions, explicit must be computed before implicit.

They also present a new Em-E partition which allows one of the subdomains to be integrated

with a time step that is an integer multiple of the other i.e. ∆T = m∆t. Here the subdomain

(Em) with time step ∆T is computed first followed by linear interpolation of the solution at

the interface and solutio of the subdomain (E) with time step ∆t. Lastly, they show that

the I-I partition cannot be solved without extrapolating the interface quantities for one of

the subdomains.

Their stability analysis confirms the results from previous I-E mesh partitions and shows

that Em-E partitions have more stringent stability requirements than the I-E method. In

addition, the critical time step also depends on the relative stiffness of the two subdomains

which makes this method unsuitable in general cases. They also found that the I-I method

48

with extrapolation is unconditionally unstable unless damping terms are included.

Partitioned Procedures: Park [54] described I-E and I-I partitioned procedures for

coupled problems. The I-E procedure was demonstrated for structural dynamics and the

I-I procedure for fluid-structure interaction problems. The I-E methods of both Belytschko

and Hughes were shown to be special cases of the partitioned procedure. A general stability

analysis considering the spectral radius of the amplification matrix was also conducted to

find stable time steps.

Park and Felippa [55] also carried out an accuracy analysis based on the results from

a two degree of freedom model problem. They show that the partitioned procedures are

2nd order accurate but the frequency distortion (period elongation/contraction) is least for

node-by-node partitions followed by element-by-element partitions and then for dof-by-dof

partitions introduced in [54].

Multi-Stepping Subcycling Procedures: Belytschko, Smolinski and Liu [56] de-

scribe an I-E procedure for the first-order transient heat conduction problem using the Euler

difference formula (2.118):

MU̇ + KU = P (3.7)

Un+1 = Un + (1− α)∆tU̇n + α∆tU̇n+1 (3.8)

The domain equations are partitioned into two subdomains A and B with time steps ∆T

and ∆t respectively:

U̇ = U̇A + U̇B; P = P A + P B; K = KA + KB (3.9)

where ∆T = m∆t. The resulting update equations are:

MU̇A = P A −KAU

MU̇B = P B −KBU

(3.10)

49

Note that the mass matrix is not decomposed. This leads to a subcycling procedure where

the solution is updated as:

Subcycling : for (n + 1) mod m 6= 0

Un+1 = Un + (1− αB)∆tU̇B
n + αB∆tU̇B

n+1 (3.11)

Total Update: for (n + 1) mod m = 0

Un+1 = Un + (1− αB)∆tU̇B
n + αB∆tU̇B

n+1

+ (1− αA)m∆tU̇A
n + αAm∆tU̇A

n+1

(3.12)

Stability analysis of this method showed that the subcycling procedure is stable as long as

the Courant time step limits are satisfied within each subdomain individually. Belytschko

and Lu [57] extended the first order subcycling method for second order problems. Neal and

Belytschko [58] considered the case of subcycling for non-integer time-step ratios between

the subdomains.

Smolinski [59] extended this subcycling technique using Em-E mesh partitions for the

2nd order equations of structural dynamics and conducted a stability analysis based on the

energy method in [60] and [61]. The stability analysis concluded that the method is stable as

long as the Courant time step limits are met within each subdomain. Further enhancements

of the subcycling method for non-integer time-step ratios [62] and to implicit subcycling

[63, 64] have also been explored.

Subcycled Newmark Scheme: Daniel [65] illustrated a subcycling procedure based

on an I-I node partition using the Newmark method. The algorithm is implemented only in

terms of the displacements as:

[M + β∆t2K]Un+1 =− [M + (1
2
− γ + β)∆t2K]Un−1

+ [2M − (1
2

+ γ − 2β)∆t2K]Un + ∆t2Peq

(3.13)

50

where Peq = (1
2
− γ + β)Pn−1 + (1

2
+ γ − 2β)Pn + βPn+1. This algorithm permits the use

of different time steps in different subdomains of the mesh. Time stepping by ∆T requires

one total update and m − 1 subcycles. The total update for the complete system is done

first by extrapolating the interface displacements of subdomain B from time step tn + ∆t to

tn + ∆T . This time steps the subdomain A to tn + ∆T while subdomain B is time stepped

only to tn + ∆t. Subdomain B is then updated in m − 1 small time step subcycles which

involve computations only over the subdomain B.

Stability analysis [66] using the conventional approach of amplification matrices showed

that the stable time step depends upon the relative stiffnesses of the subdomains. Even

though stable regions exist, there are bands of instabilities which become smaller for bigger

meshes. The subcycling procedure was also extended for the generalized-α method [67].

Concurrent Procedures: Ortiz and Nour-Omid [68] presented a concurrent procedure

(computable in parallel) for dynamic structural analysis. Here the partitioned subdomains

are solved independently one time step at a time. The resulting global solution is obtained

by weighted averaging of the computed solutions where the corresponding mass matrices

are used for weighting. They also propose a subclass of the algorithm where the effective

stiffness matrices of the resulting systems are modified to give rise to an unconditionally

stable method. An accuracy analysis comparing wave speeds (frequency distortion) is done

in [69] and the computational efficiency of this method on parallel computers is demonstrated

in [70].

Sotelino [71] described an I-E scheme similar to I-E mesh partitions by Belytschko except

that all the subdomains are treated implicitly and only the interface nodes are treated

explicitly. This allows the interface to be updated first explicitly and this interface solution

is used as boundary condition for the implicit solve of the interior nodes.

Modak and Sotelino [72] described an iterative group-implicit procedure where the solu-

tions to the individual subdomains are computed using an assumed interface reaction force

from the adjoining subdomains and iterations are carried out till the reaction force converges.

51

Stability and accuracy of this algorithm is demonstrated numerically. Dere and Sotelino [73]

proposed additional modifications to the iterative group implicit algorithm to improve its

convergence and stability properties.

Asynchronous Variational Integrators: Lew, Marsden, Ortiz and West [74, 28] de-

veloped Asynchronous Variational Integrators (AVIs) which allow the integration of each

element with its own time step so that the time step for the entire mesh is not governed by

the time step of the smallest element. This method does not involve domain decomposition

but it addresses the issue of multi-time-stepping. The maximum allowable time step in the

mesh is still constrained by the Courant limit for the largest element in the mesh. However,

AVIs are not be suitable for implicit computations such as evaluating the overall dynamic

response of a large structure since implicit AVIs are coupled in the entire space-time domain

that leads to huge computational costs.

3.3 Dual Coupling Methods

Coupling methods based on dual Schur complement approach have recently received sig-

nificant attention from researchers in domain decomposition. Dual coupling methods enforce

continuity of the solution across the interface between subdomains by introducing constraints

that are usually imposed using Lagrange multipliers. This makes them suitable for coupling

two or more subdomains almost completely independent of each other. Applications of the

dual Schur complement method such as fluid structure coupling using partitioned procedures

by Park and co-workers [75, 76], non-matching mesh tying using mortar methods [77, 78]

and discontinuous interfaces [79] have also been explored. The discussion here will be limited

to dual Schur complement methods for domain decomposition in particular for structural

dynamics.

52

3.3.1 Finite Element Tearing and Interconnecting - FETI

One of the most popular and well-researched dual Schur methods is the finite element

tearing and interconnecting (FETI) method proposed by Farhat and Roux [80, 81]. A brief

formulation of the FETI method is presented here for problems in linear statics which can

be extended further to non-linear structural dynamics.

Figure 3.3: Domain decomposition for finite element tearing and interconnecting.

A continuous problem domain Ω is partitioned into subdomains Ω1 and Ω2 creating an

interface boundary between the two subdomains Γb as shown in figure 3.3. Γu and Γt denote

the Dirichlet and Neumann boundaries respectively. The variational form of the original

boundary value problem is written as follows. For given f and t, find the displacement u

which is a stationary point of the energy functional:

E (v) = 1
2
a(v, v)− (v, f)− (v, t)Γ (3.14)

where

a(v, w) =

∫
Ω

vi,j Cijkl wk,l dΩ

(v, f) =

∫
Ω

vifi dΩ

(v, t)Γ =

∫
Γt

viti dΓ

(3.15)

The energy functionals for the partitioned systems E1(v1) and E2(v2) are analogous to the

53

definition of E (v). In addition the solution should satisfy continuity across the interface:

u1 = u2 on Γb (3.16)

Solution of the partitioned variational problem with the constraint (3.16) is equivalent to

finding the stationary point of the Lagrangian:

Ẽ (v1, v2, µ) = E1(v1) + E2(v2) + (v1 − v2, µ)Γb
(3.17)

where

(v1 − v2, µ)Γb
=

∫
Γb

µ · (v1 − v2) dΓ (3.18)

This reduces to finding the displacement fields u1 and u2 and Lagrange multipliers λ such

that:

Ẽ (u1, u2, µ) ≤ Ẽ (u1, u2, λ) ≤ Ẽ (v1, v2, λ) (3.19)

hold for any admissible v1, v2 and µ.

Applying the principle of virtual work and the finite element discretization one obtains:

K1U 1 = P 1 + C1T

Λ

K2U 2 = P 2 + C2T

Λ

C1U 1 + C2U 2 = 0

(3.20)

where C1 and C2 are boolean connectivity matrices for subdomains Ω1 and Ω2 respectively

which pick out components corresponding to the degrees of freedom lying along the interface

Γb from the subdomain vectors. This is a system of three equations and three unknowns

54

which can be solved using a bordered procedure leading to:

[
C1K1−1

C1T

+ C2K2−1

C2T
]

Λ = −(C1K1−1

P 1 + C2K2−1

P 2)

U 1 = K1−1

(P 1 + C1T

Λ)

U 2 = K2−1

(P 2 + C2T

Λ)

(3.21)

where H =
[
C1K1−1

C1T
+ C2K2−1

C2T
]

is called the Schur complement matrix.

For static problems singularities arise if the decomposition creates floating subdomains.

These singularities have to be treated using the psuedo-inverses for individual subdomains

which remove the rigid body modes from the subdomain solution:

 H −GI

−GT
I 0

 Λ

α

 =

 d

−e

 (3.22)

where, for a multi-subdomain case with S subdomains:

H =
S∑

k=1

Ck
[
Kk
]+

CkT

; d =
S∑

k=1

Ck
[
Kk
]+

P k (3.23)

The second row of (3.22) enforces the self-equilibriating condition for floating subdomains

and GI stores their rigid body modes.

The Lagrange multiplier Λ is usually solved using an iterative preconditioned conjugate

gradient (PCG) approach as:

1. Initialize i = 0

Λ0 = 0

r0 = f −HΛ0

(3.24)

55

2. Iterate for i = 0, 1, 2 · · · until convergence

di = H̃−1ri

pi = di −
i−1∑
j=i

diT Hpj

pjT Hpj
pj

ηi =
piT ri

piT Hpi

Λi+1 = Λi + ηipi

ri+1 = ri − ηiHpi

(3.25)

where H̃−1 is a suitable preconditioner. A computationally economical lumped precondi-

tioner [82] is defined as:

H̃−1 ≡
S∑

k=1

CkKkCkT

(3.26)

The PCG procedure helps avoid explicit inversion of the Schur complement matrix in the

interface equation (3.21). The matrix-vector products Hpi and H̃−1ri can be computed

subdomain-wise one at a time and the matrices themselves need not be assembled. For the

case with floating subdomains, one needs to project out the rigid body modes of the floating

subdomains from the residuals ri and the search directions pi at every PCG iteration.

Further enhancements in terms of implementation of the FETI method were proposed in

[83]. Park et al. [84] proposed an alternative algebraic form of the FETI method (A-FETI)

which was later shown to be equivalent to the original FETI method for a specific choice of

the projection operator by Rixen et al. [85]. The two approaches differ in their treatment of

cross-points which are nodes in the mesh that are common to three or more subdomains. The

original FETI method was shown to have better convergence if the continuity constraints

at such cross points included redundant dofs which leads to a singular but solvable system

of equations on the interface. The A-FETI method on the other hand can handle cross

points between any number of subdomains without such redundancies and does not lead to

56

a singular system of equations on the interface.

A two-level FETI procedure for fourth order bending problems was described by Farhat

and Mandel [86] and additional implementation refinements were provided in [87]. A FETI-

DP approach which uses a combination of dual-primal Schur complements was proposed in

[88] to improve the convergence of the iterative interface problem.

3.3.2 FETI Method for Structural Dynamics

The FETI method was also extended for structural dynamics by Farhat et al. [89]. The

semi-discrete coupled equations of motion for dynamics, assuming Ω1 = A and Ω2 = B are:

MAÜA + KAUA + CAT

Λ− P A = 0 (3.27)

MBÜB + KBUB + CBT

Λ− P B = 0 (3.28)

CAXA + CBXB = 0 (3.29)

where X denotes the kinematic quantity whose continuity is enforced on the interface. Using

this formulation one cannot enforce the continuity of all the kinematic variables namely,

displacements, velocities and accelerations.

A spectral stability analysis [90] within the framework of the Generalized-α method

proved that the the dynamic FETI algorithm is only weakly stable and predicted a linear

growth instability of the decomposed problem for any constraint on the interface. Farhat

and co-workers also proposed a Time Parallel iterative method for dynamics [91, 92].

3.3.3 Multi-time-stepping for the FETI Method

Gravouil and Combescure [93, 94] extended the dynamic FETI algorithm to include

multiple time-steps based on equality of velocities across the interface and proved the stability

of their method using the energy approach. This method is referred to as the GC method in

57

this document. Subdomains A and B are integrated with time steps ∆T and ∆t respectively

where ∆T = τ∆t. One can think of subdomain A as being integrated implicitly and B

integrated explicitly since the implicit time step is usually greater than the explicit time

step. However, theoretically there is no restriction on the time step ratios and the explicit

time step may be a multiple of the implicit time step as long as it satisfies the Courant

condition (Eq. 2.129) in its subdomain.

Equations (3.27) - (3.29) may be discretized in time as:

MAÜA
n+τ + KAUA

n+τ = P A
n+τ + CAT

Λn+τ (3.30)

MBÜB
n+j + KBUB

n+j = P B
n+j + CBT

Λn+j ∀j : 1 ≤ j ≤ τ (3.31)

CAU̇A
n+j + CBU̇B

n+j = 0 ∀j : 1 ≤ j ≤ τ (3.32)

for subdomains A and B, where the subscripts n + j and n + τ represent the instants tn+j

and tn+τ respectively. Using the Newmark relations (2.100) and (2.101) with parameters

(βA, γA) and (βB, γB) for subdomains A and B respectively, equations (3.30-3.32) yield:

M̃AÜA
n+τ = P A

n+τ −KAÛA
n+τ + CAT

Λn+τ (3.33)

M̃BÜB
n+j = P B

n+j −KBÛB
n+j + CBT

Λn+j ∀j : 1 ≤ j ≤ τ (3.34)

CAU̇A
n+j + CBU̇B

n+j = 0 ∀j : 1 ≤ j ≤ τ (3.35)

where for subdomain A:

ÛA
n+τ = UA

n + ∆T U̇A
n + ∆T 2

(
1
2
− βA

)
ÜA

n (3.36)

M̃A = MA + βA∆T 2KA (3.37)

58

and for subdomain B:

ÛB
n+j = UB

n+j−1 + ∆tU̇B
n+j−1 + ∆t2

(
1
2
− βB

)
ÜB

n+j−1 (3.38)

M̃B = MB + βB∆t2KB (3.39)

One may note that the system of equations (3.33-3.35) are coupled by the unknowns U̇A
n+j,

U̇B
n+j and Λn+j ∀j ∈ [1, τ].

Equations (3.33-3.35) can be decoupled by splitting the kinematic quantities into two

parts as follows:

Un+j = Dn+j + dn+j (3.40)

U̇n+j = Ḋn+j + ḋn+j (3.41)

Ün+j = D̈n+j + d̈n+j (3.42)

where Dn+j is the displacement under external loads only and dn+j is the displacement

under interface tractions only. The Newmark scheme in equations (2.100,2.101) can then be

expressed as:

Dn+1 = Ûn+1 + β∆t2D̈n+1 (3.43)

dn+1 = β∆t2d̈n+1 (3.44)

Ḋn+1 = ˆ̇Un+1 + γ∆tD̈n+1 (3.45)

ḋn+1 = γ∆td̈n+1 (3.46)

where Ûn+1 and ˆ̇Un+1 are defined in equations (2.101) and (2.100). Substituting equations

59

(3.41,3.46) into equations (3.33-3.35) and splitting equations (3.33) and (3.34) we get:

M̃AD̈A
n+τ = P A

n+τ −KAÛA
n+τ (3.47)

M̃BD̈B
n+j = P B

n+j −KBÛB
n+j ∀j : 1 ≤ j ≤ τ (3.48)

M̃Ad̈A
n+τ = CAT

Λn+τ (3.49)

M̃Bd̈B
n+j = CBT

Λn+j ∀j : 1 ≤ j ≤ τ (3.50)

CA
(
ḊA

n+j + ḋA
n+j

)
+ CB

(
ḊB

n+j + ḋB
n+j

)
= 0 ∀j : 1 ≤ j ≤ τ (3.51)

Note that equations (3.47,3.48) are now decoupled from the system and may be solved for

D̈A
n+τ and D̈B

n+j (initially for j = 1) independently of the others.

To solve the coupled system (3.49-3.51), ḊA
n+j and ḋA

n+j must be computed at the instant

tn+j by linearly interpolating the velocities between tn and tn+τ as:

ḊA
n+j =

(
1− j

τ

)
ḊA

n +
j

τ
ḊA

n+τ (3.52)

ḋA
n+j =

(
1− j

τ

)
ḋA

n +
j

τ
ḋA

n+τ (3.53)

Consider (3.51) in the form:

−CAḋA
n+j −CBḋB

n+j = CAḊA
n+j + CBḊB

n+j ∀j : 1 ≤ j ≤ τ (3.54)

Substituting equation (3.53) above we get:

−CA
[(

1− j

τ

)
ḋA

n +
j

τ
ḋA

n+τ

]
−CBḋB

n+j =CAḊA
n+j + CBḊB

n+j

∀j : 1 ≤ j ≤ τ

(3.55)

Utilizing equation (3.46), ḋA
n , ḋA

n+τ and ḋB
n+j can be expressed in terms of d̈A

n , d̈A
n+τ and d̈B

n+j

60

as:

ḋA
n = γA∆T d̈A

n (3.56)

ḋA
n+τ = γA∆T d̈A

n+τ (3.57)

ḋB
n+j = γB∆td̈B

n+j (3.58)

Substituting the above expressions in equation (3.55):

− (γA∆T) CA
[(

1− j

τ

)
d̈A

n +
j

τ
d̈A

n+τ

]
− (γB∆t) CBd̈B

n+j

= CAḊA
n+j + CBḊB

n+j ∀j : 1 ≤ j ≤ τ

(3.59)

Using equations (3.49) and (3.50) one obtains:

d̈A
n = M̃A-1

CAT
Λn (3.60)

d̈A
n+τ = M̃A-1

CAT
Λn+τ (3.61)

d̈B
n+j = M̃B-1

CBT
Λn+j (3.62)

Substituting equations (3.60-3.62) into (3.59) we get:

− (γA∆T) CAM̃A-1
CAT

[(
1− j

τ

)
Λn +

j

τ
Λn+τ

]
− (γB∆t) CBM̃B-1

CBT
Λn+j = CAḊA

n+j + CBḊB
n+j

(3.63)

If one assumes that the interface tractions are also interpolated linearly as:

Λn+j =

(
1− j

τ

)
Λn +

j

τ
Λn+τ (3.64)

61

then equation (3.63) reduces to:

HΛn+j = −
(
CAḊA

n+j + CBḊB
n+j

)
∀j : 1 ≤ j ≤ τ (3.65)

where

H =
[
(γA∆T) CAM̃A-1

CAT
+ (γB∆t) CBM̃B-1

CBT
]

(3.66)

Thus, the system of equations to be solved in (3.47-3.51) reduces to:

M̃AD̈A
n+τ = P A

n+τ −KAÛA
n+τ (3.67)

M̃BD̈B
n+j = P B

n+j −KBÛB
n+j ∀j : 1 ≤ j ≤ τ (3.68)

M̃Bd̈B
n+j = CBT

Λn+j ∀j : 1 ≤ j ≤ τ (3.69)

M̃Ad̈A
n+τ = CAT

Λn+τ (3.70)

HΛn+j = −
(
CAḊA

n+j + CBḊB
n+j

)
∀j : 1 ≤ j ≤ τ (3.71)

This system can be solved by first solving for D̈A
n+τ from equation (3.67) and D̈B

n+j for a

particular value of j from equation (3.68). For every time step in subdomain B, one can

solve for Λn+j from equation (3.71) by interpolating for ḊA
n+j between ḊA

n and ḊA
n+τ . This

value of Λn+j can then be used to solve for d̈B
n+j from equation (3.69) and repeating this

process by incrementing j every time until j = τ gives Λn+τ . Lastly d̈A
n+τ can be obtained

from equation (3.70) using Λn+τ .

This algorithm can be generalized for more than two subdomains and for non-linear

problems. Stability analysis using the energy method shows [94] that the coupling algorithm

is unconditionally stable for continuity of velocities and the critical time step for each explicit

subdomain is governed by the Courant limit. It is also shown that 2nd order accuracy is

preserved only if the velocity of subdomain A is constant over the larger time step ∆T and

62

one encounters numerical damping if that is not the case.

It should be noted that the interface solve needs to be done at every fine time step ∆t.

The interface matrix is full and involves inverses of the subdomain system matrices. This

is quite taxing on the efficiency of the algorithm. Possible directions for improvement may

consider different constraint equations and/or treating the discretized equations differently

for time stepping cycles that are multiples of the larger time step ∆T . Accuracy may also be

improved by choosing to implement constraints other than kinematic such as conservation

of momentum.

Prakash and Hjelmstad [95] presented a multi-time-step coupling method for Newmark

schemes which is unconditionally stable coupling, energy preserving and computationally

very efficient. Details of this multi-time-step method will be discussed in Chapter 4.

3.4 Preliminary Coupling Methods Investigated

A basic problem, one may consider, to develop a multi-time-step coupling method is a

split single degree of freedom (SDOF) problem shown in figure 3.4. Here, a simple mass (m)

and spring (k) system is split into a system of two masses (mA, mB where mA + mB = m)

and two springs (kA, kB where kA + kB = k) held together by an interface reaction force

(Λ). The load is also split into fA and fB such that fA + fB = f . The two masses (nodes) can

be integrated separately using different time steps and/or schemes and the solutions can be

coupled by computing the interface reaction. The crux of this problem lies in computing the

interface reaction correctly. One may visualize the two masses as being held together with

a link and the interface reaction as the force developed in the link during the motion.

As part of the current research, a coding framework to investigate alternative approaches

for multi-time-step coupling of the split SDOF problem was developed. Finite element

codes were also written for linear 1-D and 2-D problems using bar and 4-node quadrilateral

elements respectively. Subroutines for time integration include explicit central difference,

63

Figure 3.4: A split SDOF problem.

implicit average acceleration and a general Newmark method based on γ and β. The GC

method was also implemented in both 1-D and 2-D codes for comparison with the current

coupling method. Both, 1-D and 2-D codes are capable of analyzing a system with any

number of subdomains and any integer time step ratios between them. Results obtained

from a few approaches for multi-time-step coupling are discussed below.

3.4.1 Iterative I-E Coupling

This idea is based on element partitioning with implicit time step ∆T and explicit time

step ∆t where ∆T = τ∆t. The algorithm for advancing the solution by ∆T is as follows:

1. Save the current state

2. Loop until convergence

(a) Solve the Implicit partition

(b) Loop for j = 1 to τ

i. Linearly interpolate displacement for shared nodes from implicit solution.
ii. Solve Explicit partition with specified displacement on the shared nodes.

(c) Compute the traction for the shared nodes from adjacent explicit elements.

(d) Apply the computed traction to the shared nodes on implicit partition.

(e) Check for convergence

64

• No: load the initial state stored before first iteration and loop again for the
next iteration.
• Yes: save computed state and move to next time step.

Figure 3.5: 1-D bar problem.

Tests were run on a 1-D bar, fixed at one end and loaded with a step load at the other.

Half the elements of the bar were integrated explicitly and the other half integrated implicitly

as shown in figure 3.5.

Figure 3.6: End displacement for ∆T/∆t = 100. Stable

65

Figure 3.7: End displacement for ∆T/∆t = 3. Unstable

Numerical results from this algorithm show that stability can be achieved for the case

τ = 1. However stability is questionable for higher time step ratios. The number of iterations

to convergence also increases with the time step ratio. A case with τ = 100; ∆t = 5×10−9 ≈

∆tcr/50 was computed for 10000 ∆T and shows good results without instability (figure

3.6). For another case with τ = 3; ∆t = 2 × 10−6 ≈ ∆tcr stability is lost very quickly

(figure 3.7). Analytical stability analysis may shed some light on the observed instability.

Intuitively, one may argue that this method fails for multiple time step ratio cases because

the interface reaction force at the intermediate time steps is not computed correctly which

leads to instability.

66

3.4.2 GC Multi-time-step Coupling Using Bordered Solution

A modification of the GC method was devised to solve the (2τ + 1) equations in (3.30)

- (3.32) as a whole in order to avoid the assumption of linear variation of interface reaction

forces at the intermediate time steps. The entire system of equations was solved using a

bordered solution procedure to advance the solution by ∆T . It was found that time stepping

could still be used for computing the uncoupled part of the solution from equations (3.67)

and (3.68). In order to use time-stepping for the interface solve and the subsequent update

one has to consider the coupled interface equation obtained from applying the bordered

procedure to the complete system:

A1
1
τ
B

A2 A1
2
τ
B

...
...

Aτ Aτ−1 · · · A1 + 1
τ
B

λ1

λ2

...

λτ

=

∑
AB CkV̇ k

1∑
AB CkV̇ k

2

...∑
AB CkV̇ k

τ

(3.72)

which can be solved using the transformation:

λj = λ̂j −Λjλτ

where Λj = A−1
1

[
j
τ
B −

∑j−1
i=1Aj−i+1Λi

]
and λ̂j = A−1

1

[∑
kC

kV̇ k
j −

∑j−1
i=1Aj−i+1λ̂i

] (3.73)

This transformation permits the solution of Lagrange multipliers in a time stepping fashion

along with the subdomain solutions. At the end of the τ th time step the Lagrange multipliers

are known exactly and the solution for both subdomains A and B can be updated correctly.

Note that the solution for subdomain B has to be stored for all the intermediate time steps

1 to (τ − 1). Stability was studied numerically.

A modification of this scheme to eliminate the terms above the diagonal in the interface

matrix, by using extrapolation instead of interpolation of velocities, was also considered.

67

This helps in faster interface solves and enables one to compute the entire solution in a time

stepping fashion: one ∆t time step at a time. Figure 3.8 shows a comparison of the results

from the GC method (GC), the Bordered GC method using interpolation (BorInt) and the

Bordered GC method using extrapolation (BorExt). It was observed that the assumption of

linear variation of interface reactions at the intermediate time steps not only simplifies the

interface solve but also gives more accurate results. In addition, the Bordered GC method

using extrapolation results in spurious oscillations for higher time step ratios and sometimes

displays instability.

Figure 3.8: Algorithm comparison.

68

3.4.3 Minimization of Error Approach

This approach is based on minimizing a discretized least squares error functional that

has a quadratic form in terms of the unknowns. Consider the SDOF problem shown in figure

3.4 where the time step ratio between A and B is 2 i.e. 1
2
∆ta = ∆tb = ∆t.

The system to be solved is:

gb
1 : mbüb

1 + kbub
1 + R1 − f b

1 = 0

gb
2 : mbüb

2 + kbub
2 + R2 − f b

2 = 0

ga
2 : maüa

2 + kaua
2 −R2 − fa

2 = 0

(3.74)

where the subscripts denote the time steps starting from 0. Thus t0 = 0, t1 = ∆t and

t2 = 2∆t. A cubic polynomial is chosen as the model displacement for the interface:

uI(t) = d t3 + a t2 + b t + c

u̇I(t) = 3 d t2 + 2 a t + b

üI(t) = 6 d t + 2 a

(3.75)

where d, a, b and c are unknown parameters. Thus, the values of the interface quantities at

time steps t0, t1 and t2 are:

uI
0 = c uI

1 = d t31 + a t21 + b t1 + c uI
2 = d t32 + a t22 + b t2 + c

u̇I
0 = b u̇I

1 = 3 d t21 + 2 a t1 + b u̇I
2 = 3 d t22 + 2 a t2 + b

üI
0 = 2 a üI

1 = 6 d t1 + 2 a üI
2 = 6 d t2 + 2 a

(3.76)

69

Now, we define an error functional as:

J =1
2
ξÜ [(üa

0 − üI
0)

2 + (üa
2 − üI

2)
2 +

∑2
j=0(ü

b
j − üI

j)
2]

+ 1
2
ξU̇ [(u̇a

0 − u̇I
0)

2 + (u̇a
2 − u̇I

2)
2 +

∑2
j=0(u̇

b
j − u̇I

j)
2]

+ 1
2
ξU [(ua

0 − uI
0)

2 + (ua
2 − uI

2)
2 +

∑2
j=0(u

b
j − uI

j)
2]

+ λa
2g

a
2 + λb

1g
b
1 + λb

2g
b
2

(3.77)

This functional is minimized in terms of the 18 unknowns : d, a, b, c, üb
1, üb

2, üa
2, u̇b

1, u̇b
2,

u̇a
2, ub

1, ub
2, ua

2, R1, R2, λb
1, λb

2 and λa
2 yielding an 18× 18 system which can then be solved

as a whole. The above system results in a stable computation for multi-time-step coupling.

However, the interface reaction forces are still not computed correctly (figure 3.9).

Figure 3.9: Comparison of computed interface reactions by using different constraints.

To overcome this anomaly, the following constraints were added to the above system one

70

at a time:

gI
1 : maüI

1 + kauI
1 −R1 − fa

1 = 0

ga
1 : maüa

1 + kaua
1 −R1 − fa

1 = 0

(3.78)

where the quantities üa
1, u̇a

1 and ua
1 in the second constraint are obtained by linearly inter-

polating between t0 and t2. As evident from the plot in Figure 3.9, adding the constraint

ga
1 resulted in a very accurate computation of the interface traction. This observation led to

the idea used in the following chapter for the development of a new, efficient and accurate

multi-time-step coupling method for Newmark schemes.

71

Chapter 4

A New Multi-time-step Coupling
Method

An efficient and accurate multi-time-step coupling method using FETI domain decom-

position for structural dynamics is presented. Using this method one can divide a large

structural mesh into a number of smaller subdomains, solve the individual subdomains sep-

arately and couple the solutions together to obtain the solution to the original problem.

The various subdomains can be integrated in time using different time steps and/or different

Newmark schemes. This approach will be most effective for very large-scale simulations on

complex geometries.

The present coupling method builds upon the multi-time-step method previously pro-

posed by Gravouil and Combescure [93] (GC method) who demonstrated that imposing

continuity of velocities at the interface led to a stable algorithm. They proposed a multi-

time-step coupling method to couple arbitrary Newmark schemes with different time steps in

different subdomains. They proved that the GC method is unconditionally stable as long as

all of the individual subdomains satisfy their own stability requirements. They also showed

that for the case of a single time step in all the subdomains, the GC method is energy

preserving in that it does not add or remove energy from the coupled system. However, for

multi-time-step cases the GC method is dissipative. Another drawback of the GC method

for multi-time-step cases is that one needs to compute the interface reactions at the smallest

time step in the mesh which is a significant computational effort.

It is shown that for the simplest case, when the same time step is used for all subdomains

in the mesh, the present method simplifies to the GC method and is unconditionally stable

and energy preserving. In addition, the present method is shown to posses these properties

72

of unconditional stability and energy preservation for general multi-time-step cases too.

The present method is also computationally more efficient than the GC method since the

computation of interface forces is required only at the largest time step in the mesh as

opposed to the smallest time step for the GC method.

4.1 Another Look at Newmark Time Stepping Scheme

To facilitate the derivation of the present multi-time-step coupling method it is helpful

to visualize the Newmark time-stepping scheme in the following way. Consider the fully

discretized system of equations and Newmark relations:

MÜn+1 + KUn+1 = Pn+1 (4.1)

U̇n+1 = U̇n + ∆t (1− γ) Ün + γ∆tÜn+1 (4.2)

Un+1 = Un + ∆tU̇n + ∆t2
(

1
2
− β

)
Ün + β∆t2Ün+1 (4.3)

Writing the same in matrix form, one obtains:

M 0 K

−γ∆tI I 0

−β∆t2I 0 I

Ün+1

U̇n+1

Un+1

 =

Pn+1

0

0

−

0

ˆ̇Un+1

Ûn+1

 (4.4)

This can be expressed compactly as:

M Un+1 = Pn+1 − N Un (4.5)

where

M =

M 0 K

−γ∆tI I 0

−β∆t2I 0 I

 ; N =

0 0 0

−∆t(1− γ)I −I 0

−∆t2(1
2
− β)I −∆tI −I

 (4.6)

73

Un =

Ün

U̇n

Un

 ; Pn+1 =

Pn+1

0

0

 (4.7)

One may verify that solving the system (4.5) is the same as advancing the solution by a

single time step from tn to tn+1. Knowing the solution at time tn+1 one can now advance

the solution by another time step as:

M 0 K

−γ∆tI I 0

−β∆t2I 0 I

0

0 0 0

−∆t(1− γ)I −I 0

−∆t2(1
2
− β)I −∆tI −I

M 0 K

−γ∆tI I 0

−β∆t2I 0 I

Ün+1

U̇n+1

Un+1

Ün+2

U̇n+2

Un+2

=

Pn+1

ˆ̇Un+1

Ûn+1

Pn+2

0

0

(4.8)

This can be expressed compactly as:

 M 0

N M

 Un+1

Un+2

 =

 Pn+1

Pn+2

 (4.9)

Extending the analogy to m time steps one obtains the following system of equations:

M

N M
.

N M

Un+1

Un+2

...

Un+m

=

Pn+1 − N Un

Pn+2

...

Pn+m

(4.10)

74

where

Pn+j =

Pn+j

0

0

 Un+j =

Ün+j

U̇n+j

Un+j

 ∀j ∈ [1, m] (4.11)

Note that the system (4.10) is lower triangular and can be solved by forward substitution

row-wise from top to bottom which simply amounts to time-stepping the initial state Un by

m time steps to obtain Un+m. For non-linear problems, this way of visualizing the Newmark

time-stepping scheme is valid for a single time step of the linearized system (2.105) within

one iteration.

4.2 Coupled Equations for Structural Dynamics

The coupled equations of motion for dual Schur domain decomposition, based on the

conventional FETI approach and the algebraic FETI (A-FETI) approach, can be derived

from energy principles (see section 2.6). The two approaches have been shown to be equiv-

alent [85] but have their own merits and demerits . The FETI-DP method [88] combines

the two approaches by treating part of the interface that is shared exclusively between two

subdomains in the conventional manner and other parts of the interface that include cross

points using the A-FETI approach.

4.2.1 Conventional FETI

Consider a continuous problem domain Ω which is decomposed into S subdomains Ωk

for 1 ≤ k ≤ S as shown in Figure 4.1(a). This partitioning creates the interface Γb of shared

nodes between the subdomains. Let the number of degrees of freedom in subdomain Ωk be

Nk and the total number of degrees of freedom along Γb be L. As shown in Figure 4.1(b),

there are additional forces R(t) acting on a subdomain resulting from its interaction with

the rest of the mesh.

75

(a) (b)

Figure 4.1: (a) A partitioned problem domain showing shared nodes. (b) A typical subdo-
main.

For multiple subdomains, the Lagrangian can be written as:

L ≡
S∑

k=1

[
1

2
U̇ kT

M kU̇ k − 1

2
U kT

KkU k

]
(4.12)

where the superscript on a quantity indicates its subdomain. In addition the solution must

be continuous across the interface Γb. We impose continuity of velocities at the interface as:

S∑
k=1

CkU̇ k = 0 (4.13)

where Ck is a boolean matrix of dimension L × Nk that operates on nodal vectors from

subdomain Ωk, picks out the degrees of freedom lying along Γb and assembles them in an

interface vector. Note that conjugate to Ck, the CkT matrix operates on interface vectors,

picks out the degrees of freedom that belong to Ωk and assembles them at their corresponding

position in the nodal vector for the subdomain.

The Lagrangian is augmented with the constraint equation (4.13) using a multiplier Λ

76

as:

L̃ =
S∑

k=1

[
1

2
U̇ kT

M kU̇ k − 1

2
U kT

KkU k

]
+ ΛT

[
S∑

k=1

CkU̇ k

]
(4.14)

Taking the variation of L̃:

δL̃ =
S∑

k=1

[
δU̇ kT

M kU̇ k − δU kT
KkU k + δU̇ kT

CkT
Λ
]

+ δΛT

[
S∑

k=1

CkU̇ k

]
(4.15)

The external virtual work done on the system is given by:

δW =
S∑

k=1

δU kT
P k (4.16)

Hamilton’s principle states: ∫ t2

t1

(
δL̃+ δW

)
dt = 0 (4.17)

Upon substitution we obtain:

∫ t2

t1

S∑
k=1

[
δU̇ kT

(
M kU̇ k + CkT

Λ
)
− δU kT (

KkU k − P k
)]

dt +

∫ t2

t1

δΛT

[
S∑

k=1

CkU̇ k

]
dt = 0

(4.18)

Integrating the first term by parts assuming δU k(t1) = δU k(t2) = 0 we get:

∫ t2

t1

S∑
k=1

− δU kT
[
M kÜ k + KkU k + CkT

Λ̇− P k
]

+ δΛT

[
S∑

k=1

CkU̇ k

]
dt = 0 (4.19)

Using the fundamental theorem of the calculus of variations, and replacing the variable Λ̇

by Λ the semidiscrete equations of motion for a coupled system are obtained as:

M kÜ k + KkU k + CkT
Λ = P k ∀k : 1 ≤ k ≤ S (4.20)

S∑
k=1

CkU̇ k = 0 (4.21)

where the unknowns are the kinematic quantities from all the subdomains and the Lagrange

77

multipliers Λ which can be interpreted as the interface reaction forces acting internally

between the various subdomains.

4.2.2 Algebraically Partitioned FETI

An alternate derivation of the coupled equations of motion can be obtained by alge-

braically partitioning the domain Ω into S subdomains. The global interface, denoted ΓI ,

is union of all the subdomain interfaces Γk
I . Let the Boolean connectivity matrix Ck pick

out dofs corresponding to Γk
I from Ωk and the Boolean connectivity matrix Bk pick out dofs

corresponding to Γk
I from ΓI .

For illustration purposes, we will choose to impose continuity of displacement across the

interface ΓI :

gk(U k, U I) ≡ CkU̇ k −BkU̇ I = 0 ∀k : 1 ≤ k ≤ S (4.22)

Defining the constrained Lagrangian:

L̃ =
S∑

k=1

[
1

2
U̇ kT

M kU̇ k − 1

2
U kT

KkU k + ΛkT

gk

]
(4.23)

Taking the variation of L̃:

δL̃ =
S∑

k=1

[
δU̇ kT

M kU̇ k − δU kT
KkU k + δU̇ kT

CkT
Λk + δU̇ IT

BkT
Λk + δΛTgk

]
(4.24)

Using the Hamilton’s principle and integrating the first term by parts, we get:

∫ t2

t1

S∑
k=1

− δU kT
[
M kÜ k + KkU k + CkT

Λ̇k − P k
]

dt

+

∫ t2

t1

S∑
k=1

δΛkT
[
CkU̇ k −BkU̇ I

]
dt +

∫ t2

t1

δU̇ IT

[
S∑

k=1

BkT
Λk

]
dt = 0

(4.25)

Using the fundamental theorem of the calculus of variations, and replacing the variable Λ̇

78

by Λ, the semidiscrete equations of motion for an algebraically partitioned system are:

M kÜ k + KkU k + CkT
Λk = P k ∀k : 1 ≤ k ≤ S (4.26)

CkU̇ k = BkU̇ I ∀k : 1 ≤ k ≤ S (4.27)
S∑

k=1

BkT

Λk = 0 (4.28)

Note that in the semi-discrete form, continuity of displacements implies continuity of veloci-

ties and accelerations. However, in the time discretized form, one can impose the continuity

of only one these kinematic quantities and continuity of velocities is shown to have stable

behavior.

4.3 Implementation of FETI Interfaces

Let the continuous problem domain Ω be decomposed into S subdomains Ωk for 1 ≤ k ≤

S as shown in figure 4.1(a). This partitioning creates the interface Γb of shared nodes between

the subdomains. Each subdomain can then be solved using the appropriate time integration

scheme with the optimal time step. As shown in figure 4.1(b), there are additional forces

R(t) acting on a subdomain resulting from its interaction with the rest of the mesh.

The global degrees of freedom can be decomposed into degrees of freedom of the compo-

nent subdomains as shown in figure 4.2. Let N be the total number of degrees of freedom

in the unpartitioned structure and Nk be the number of degrees of freedom in subdomain

Ωk. Similarly, let L be the number of degrees of freedom in Ω lying along Γb and Lk be the

number of degrees of freedom in subdomain Ωk lying along Γb. A degree of freedom lying on

the boundary Γb may be shared by two or more subdomains and may have to be replicated

for each of the corresponding subdomains.

Let P k,j be the number of degrees of freedom in subdomain Ωk that are shared with

subdomain Ωj as depicted in figure 4.3(a). Continuity constraints for the shared degrees of

79

Figure 4.2: (a) Degrees of freedom for the unpartitioned system. (b) Degrees of freedom
partitioned among subdomains. (c) Degrees of freedom for one subdomain.

freedom P k,j(= P j,k) may be written as:

V k|P k,j = V j|P j,k ∀k : 1 ≤ k ≤ S and ∀j : k < j ≤ S (4.29)

where V k and V j are the solution quantities obtained from subdomains Ωk and Ωj respec-

tively and the equality is assumed to hold only between the corresponding degrees of freedom.

Note that j varies between (k +1) and S to avoid duplication of constraints (shaded degrees

of freedom in figure 4.3(a)). Each row in figure 4.3(a) represents one constraint correspond-

ing to a single shared degree of freedom. Note that for those degrees of freedom shared

80

Figure 4.3: (a) Shared degrees of freedom for each subdomain. Shaded degrees of freedom
represent constraints. (b) Shared degrees of freedom concatenated for Γb.

by three or more subdomains, the continuity constraints need to be enforced between all

combinations of the participating subdomains taken two at a time. For example, if a node is

shared between subdomains numbered 1,2 and 3 then the constraints to be enforced would

be:

V 1|P 1,2 = V 2|P 2,1 V 1|P 1,3 = V 3|P 3,1 V 2|P 2,3 = V 3|P 3,2 (4.30)

The shared degrees of freedom from all the subdomains may be concatenated together to

81

form a global interface vector for the entire boundary Γb as shown in figure 4.3(b) where P

is total number of constraints to be enforced.

To enforce the constraints in equation (4.29) we introduce a matrix operator Ck, one for

each subdomain, that picks out those degrees of freedom from the subdomain that are shared

with other subdomains and places them in the appropriate rows of the global interface vector.

A simple example for two subdomains A and B is shown in figure 4.4. The C matrices for

this decomposition are:

CA CB

1

2

3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

0 0 0 0 0 −1

1

2

3

1 2 3 4 5 6 1 2 3 4 5 6

Figure 4.4: Decomposition of a domain into two subdomains A and B.

Note that the C matrices transform a subdomain vector into an interface vector and CT

matrices transform an interface vector into a subdomain vector. For the example in figure

4.4, continuity constraints are given by:

82

Figure 4.5: Structure of a typical C matrix for subdomain Ωk.

CAV A + CBV B = 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

V A
1

V A
2

V A
3

V A
4

V A
5

V A
6

+

0 0 0 −1 0 0

0 0 −1 0 0 0

0 0 0 0 0 −1

V B
1

V B
2

V B
3

V B
4

V B
5

V B
6

=

0

0

0

=>

V A
1 = V B

4

V A
2 = V B

3

V A
5 = V B

6

Interface forces on each subdomain are given by:

83

CAT
Λ CBT

Λ

1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 0

λ1

λ2

λ3

 =

λ1

λ2

0

0

λ3

0

0 0 0

0 0 0

0 −1 0

−1 0 0

0 0 0

0 0 −1

λ1

λ2

λ3

 =

0

0

−λ2

−λ1

0

−λ3

The Ck matrix consists of binary elements and typically has the structure shown in figure

4.5 where the blank regions represent "zeros" and the shaded regions represent possible

"ones" (or negative ones). Note that CkT operates on vector quantities defined on the

global interface, picks out components corresponding to the shared degrees of freedom in the

subdomain Ωk and places them in the appropriate rows of the subdomain vector.

4.4 The Multi-time-step Coupling Method

For simplicity consider a problem with two subdomains A and B. Let the subdomains

be integrated with time steps ∆T and ∆t respectively where ∆T = m∆t. The Newmark

parameters for the two subdomains are given by (γA, βA) and (γB, βB) respectively. For

notational simplicity we will illustrate the coupling method for advancing the solution by

∆T from t0 to tm = t0 + ∆T as shown in Figure 4.6. These ideas can be easily generalized

for advancing the solution from tn to tn+m.

The semi discretized equations of motion that one obtains from Hamilton’s principle for

the two subdomains with continuity of velocities enforced at the interface are:

MAÜA + KAUA + CAT
Λ− P A = 0 (4.31)

MBÜB + KBUB + CBT
Λ− P B = 0 (4.32)

CAU̇A + CBU̇B = 0 (4.33)

84

Figure 4.6: Representation of time steps for the two subdomain case.

The fully discretized equations for subdomain A can be written as:

MAÜA
m + KAUA

m + CAT
Λm − P A

m = 0 (4.34)

U̇A
m −

[
U̇A

0 + ∆T (1− γA) ÜA
0 + γA∆T ÜA

m

]
= 0 (4.35)

UA
m −

[
UA

0 + ∆T U̇A
0 + ∆T 2

(
1
2
− βA

)
ÜA

0 + βA∆T 2ÜA
m

]
= 0 (4.36)

where the second and the third equations are obtained from the Newmark relations. Similarly

for subdomain B the fully discretized set of equations ∀j = 1, 2, · · · , m can be written as:

MBÜB
j + KBUB

j + CBT
Λj − P B

j = 0 (4.37)

U̇B
j −

[
U̇B

j−1 + ∆t (1− γB) ÜB
j−1 + γB∆tÜB

j

]
= 0 (4.38)

UB
j −

[
UB

j−1 + ∆t U̇B
j−1 + ∆t2

(
1
2
− βB

)
ÜB

j−1 + βB∆t2ÜB
j

]
= 0 (4.39)

The equation of continuity of velocities at the interface which determines the interface reac-

tion force Λm at the big time step ∆T is written as:

CAU̇A
m + CBU̇B

m = 0 (4.40)

85

In addition to the above equations, one needs (m − 1) equations to compute the interface

reaction forces Λj ∀j = 1, 2, · · · , (m − 1) at all the intermediate time steps of ∆t. Since

the interface reaction forces at the intermediate time steps should be in balance between

both the subdomains, therefore the following equations from subdomain A are required to

balance the reactions from subdomain B:

CA
[
MAÜA

j + KAUA
j + CAT

Λj − P A
j

]
= 0 ∀j = 1, 2, · · · , (m− 1) (4.41)

where the kinematic quantities for subdomain A at intermediate time steps are obtained by

linearly interpolating between the end points as:

ÜA
j =

(
1− j

m

)
ÜA

0 +

(
j

m

)
ÜA

m (4.42)

U̇A
j =

(
1− j

m

)
U̇A

0 +

(
j

m

)
U̇A

m (4.43)

UA
j =

(
1− j

m

)
UA

0 +

(
j

m

)
UA

m (4.44)

Note that the system of equations (4.34)-(4.44) has 7m unknowns and the same number of

equations and can now be solved. The vector of unknowns is:

[
UB

1 , UB
2 , · · · , UB

m | UA
m | UA

1 , UA
2 , · · · , UA

m−1 | Λ1,Λ2, · · · ,Λm−1 | Λm

]T
Using the notation of section §4.1, one can define subdomain block matrices:

Mk =

M k 0 Kk

−γk∆tkI
k Ik 0

−βk∆t2kI
k 0 Ik

 ; Nk =

0 0 0

−∆tk(1− γk)I
k −Ik 0

−∆t2k(
1
2
− βk)I

k −∆tkI
k −Ik

 (4.45)

86

Ck =

CkT

0

0

 ; Uk
j =

Ü k

j

U̇ k
j

U k
j

 ; Ik =

Ik 0 0

0 Ik 0

0 0 Ik

 (4.46)

PB
j =

P B

j

0

0

 ∀j ∈ [1, m] ; PA
m =

P A

m

0

0

 ; PA
j = CAP A

j ∀j ∈ [1, (m− 1)] (4.47)

JA
j = − j

m
IA LA

j = (1− j

m
)UA

0 ∀j ∈ [1, (m− 1)] (4.48)

RA =

[
CAMA 0 CAKA

]
Bk =

[
0 Ck 0

]
(4.49)

One may verify that the system of equations (4.34)-(4.44) is completely represented in

the matrix equation:

MB

NB MB

.

NB MB

CB

CB

. . .

CB

MA CA

JA
1

JA
2

...

JA
m−1

IA

IA

. . .

IA

RA

RA

. . .

RA

IR

IR

. . .

IR

BB BA 0

UB
1

UB
2

...

UB
m

UA
m

UA
1

UA
2

...

UA
m−1

Λ1

Λ2

...

Λm−1

Λm

=

PB
1 − NBUB

0

PB
2

...

PB
m

PA
m − NAUA

0

LA
1

LA
2

...

LA
m−1

PA
1

PA
2

...

PA
m−1

0

(4.50)

87

Here we have used the identity CACAT
= IR where IR is an identity matrix of size equal

to the degrees of freedom along the interface between A and B. For general cases with more

than two subdomains having a common node, special care needs to be taken in formulating

this matrix.

4.4.1 Bordered Solution Procedure

The matrix equation (4.50) can be solved by a bordered procedure by partitioning the

matrix along the double lines in equation (4.50) as:

 M B

C G

 U

Λ

 =

 P

Q

 (4.51)

Let

U = V + W

where V = M−1P

and W = −YΛ ; Y = M−1B

(4.52)

Note the first row in equation (4.51) is satisfied:

MU + BΛ = P

MV + MW + BΛ = P

MYΛ− BΛ = (MV − P)

(MY − B)Λ = (MV − P)

(4.53)

88

The second row is used for computing the interface reactions:

CU + GΛ = Q

CV + CW + GΛ = Q

[−CY + G]Λ = Q− CV

(4.54)

The quantities in equation (4.52) can be computed as follows:

Computing MV = P :

MB

NB MB

.

NB MB

MA

JA
1

JA
2

...

JA
m−1

IA

IA

. . .

IA

VB
1

VB
2

...

VB
m

VA
m

VA
1

VA
2

...

VA
m−1

=

PB
1

PB
2

...

PB
m

PA
m

LA
1

LA
2

...

LA
m−1

(4.55)

This system is solved simply by time stepping through subdomain B by m time steps of

size ∆t each and time stepping subdomain A once through a time step of ∆T under external

loads only. This time stepping yields the values for VB
1 , VB

2 ... VB
m and VA

m respectively. The

values for VA
1 , VA

2 ... VA
m−1 at the intermediate time steps in subdomain A are obtained by

linearly interpolating between UA
0 and VA

m.

89

Computing MY = B :

MB

NB MB

.

NB MB

MA

JA
1

JA
2

...

JA
m−1

IA

IA

. . .

IA

YB
1

YB
2 YB

1

...
...

. . .

YB
m YB

m−1 · · · YB
1

YA
m

YA
1

YA
2

...

YA
m−1

=

CB

CB

. . .

CB

CA

0

0
...

0

(4.56)

Note that the structure of Y shown above is obtained when one solves for it columnwise

taking one column at a time from the right hand side. For example the first row yields:

MBYB
1 = CB

MB 0 KB

−γB∆tIB IB 0

−βB∆t2IB 0 IB

Ÿ B
1

Ẏ B
1

Y B
1

 =

CBT

0

0

(4.57)

Let M̃B = MB + βB∆t2KB. Thus

Ÿ B
1 = M̃B−1

CBT

Ẏ B
1 = γB∆tM̃B−1

CBT

Y B
1 = βB∆t2M̃B−1

CBT

(4.58)

90

For the subsequent rows in the first column:

NBYB
j−1 + MBYB

j = 0 =⇒ MBYB
j = −NBYB

j−1
MB 0 KB

−γB∆tIB IB 0

−βB∆t2IB 0 IB

Ÿ B
j

Ẏ B
j

Y B
j

 = −

0 0 0

−∆t(1− γB)IB −IB 0

−∆t2(1
2 − βB)IB −∆tIB −IB

Ÿ B
j−1

Ẏ B
j−1

Y B
j−1

(4.59)

Thus
MB 0 KB

−γB∆tIB IB 0

−βB∆t2IB 0 IB

Ÿ B
j

Ẏ B
j

Y B
j

 =

0

ˆ̇Y B
j

Ŷ B
j

 (4.60)

where ˆ̇Y B
j and Ŷ B

j are obtained from Newmark relations as:

ˆ̇Y B
j = Ẏ B

j−1 + ∆t (1− γB) Ÿ B
j−1

Ŷ B
j = Y B

j−1 + ∆t Ẏ B
j−1 + ∆t2

(
1
2 − βB

)
Ÿ B

j−1

(4.61)

This amounts to solving for the subsequent values of YB
j ∀j ∈ [2, m] by time stepping the

initial YB
1 under zero load. For subdomain A, YA

m can also be solved in a similar way:

MAYA
m = CA

MA 0 KA

−γA∆TIA IA 0

−βA∆T 2IA 0 IA

Ÿ A
m

Ẏ A
m

Y A
m

 =

CAT

0

0

(4.62)

Let M̃A = MA + βA∆T 2KA. Thus

Ÿ A
m = M̃A−1

CAT

Ẏ A
m = γA∆TM̃A−1

CAT

Y A
m = βA∆T 2M̃A−1

CAT

(4.63)

91

The intermediate values YA
j ∀j ∈ [1, (m− 1)] are obtained by linearly interpolating between

0 and YA
m.

Computing the Interface Matrix [−CY + G] :

−CY = −

RA

RA

. . .

RA

BB BA

YB
1

YB
2 YB

1

...
...

. . .

YB
m YB

m−1 · · · YB
1

YA
m

YA
1

YA
2

...

YA
m−1

(4.64)

−CY = −

RAYA
1

RAYA
2

...

RAYA
m−1

CBẎ B
m CBẎ B

m−1 · · · CBẎ B
2

CBẎ B
1 + CAẎ A

m

(4.65)

where

RAYA
j =

[
CAMA 0 CAKA

]
Ÿ A

j

Ẏ A
j

Y A
j

= CA

(
MAŸ A

j + KAY A
j

)
=
(

j

m

)
CA

(
MA

(
M̃A−1

CAT
)

+ KA
(
βA∆T 2M̃A−1

CAT
))

=
(

j

m

)
CA

(
M̃AM̃A−1

)
CAT

=⇒ RAYA
j =

(
j

m

)
IR

(4.66)

92

Note that the term CBẎ B
1 + CAẎ A

m obtained here is exactly the same as that obtained by

Gravouil and Combescure [93]:

HGC = γB∆tCBM̃B−1

CBT

+ γA∆TCAM̃A−1

CAT

(4.67)

Thus [−CY + G]:

IR

IR

. . .

IR

−
(

1
m

)
IR

−
(

2
m

)
IR

...

−
(

m− 1
m

)
IR

−CBẎ B
m −CBẎ B

m−1 · · · −CBẎ B
2

−HGC

(4.68)

Computing the Interface Right Hand Side Vector {Q− CV} :

CAP A
1

CAP A
2

...

CAP A
m−1

0

−

RA

RA

. . .

RA

BB BA

VB
1

VB
2

...

VB
m

VA
m

VA
1

VA
2

...

VA
m−1

(4.69)

93

Thus

Q− CV =

CA
(
P A

1 −MAV̈ A
1 −KAV A

1

)
CA

(
P A

2 −MAV̈ A
2 −KAV A

2

)
...

CA
(
P A

m−1 −MAV̈ A
m−1 −KAV A

m−1

)
−
(
CBV̇ B

m + CAV̇ A
m

)

(4.70)

Computing the Interface Reaction Forces Λ:

Now the interface equation [G− CY]{Λ} = {Q− CV} can be solved for Λ using equations

(4.68) and (4.70). Let Sj = CA
(
P A

j −MAV̈ A
j −KAV A

j

)
∀j ∈ [1, (m − 1)]. Multiplying

each row j (where j ∈ [1, (m− 1)]) of the interface equation by CBẎ B
m−j+1 and adding it to

the last row one obtains:−HGC −
m−1∑
j=1

(
j

m

)
CBẎ B

m−j+1

Λm = −
(
CBV̇ B

m + CAV̇ A
m

)
+

m−1∑
j=1

CBẎ B
m−j+1Sj (4.71)

which can be written as:

HΛm = −
(
CBV̇ B

m + CAV̇ A
m

)
+

m−1∑
j=1

CBẎ B
m−j+1Sj (4.72)

where

H = −CAẎ A
m −

m∑
j=1

(
j

m

)
CBẎ B

m−j+1 (4.73)

Using the values of Λm computed from equation (4.72) one can compute the interface

reaction forces at the intermediate time steps as:

Λj = Sj +
(

j

m

)
Λm ∀j ∈ [1, (m− 1)] (4.74)

94

Computing the Updated Solution W = −YΛ:

W =

WB
1

WB
2

...

WB
m

WA
m

WA
1

WA
2

...

WA
m−1

= −YΛ = −

YB
1

YB
2 YB

1

...
...

. . .

YB
m YB

m−1 · · · YB
1

YA
m

YA
1

YA
2

...

YA
m−1

Λ1

Λ2

...

Λm−1

Λm

(4.75)

where

WB
j =

j∑
i=1

YB
j−k+1Λk ∀j ∈ [1, m]

WA
m = YA

mΛm

WA
j = YA

j Λm ∀j ∈ [1, (m− 1)]

(4.76)

4.4.2 Interface Decoupling and Physical Interpretation

The interface matrix (4.73) takes a complicated form since the intermediate time steps

are coupled at the interface. However, it is possible to decouple the interface matrix for a

simpler implementation using the final result in equation (4.74) as follows.

Henceforth we will follow the notation of Section 4.1 and the quantities defined in ex-

pressions (4.6) and (4.7) will be associated with a particular subdomain denoted by its

superscript. The fully discretized equations for subdomain A at time tm can be written as:

MAUA
m + CAΛm = PA

m − NAUA
0 (4.77)

95

where CA can be obtained from the definition:

Ck =

CkT

0

0

 (4.78)

Similarly, the fully discretized equations for subdomain B at time tj can be written as:

MBUB
j + CBΛj = PB

j − NBUB
j−1 ∀j ∈ [1, 2, · · · , m] (4.79)

The equation of continuity of velocities is written only at the final time step m as:

CAU̇A
m + CBU̇B

m = 0 (4.80)

This allows each subdomain to be integrated accurately with its own time step rather than

constraining the velocity from subdomain B to match the linearly interpolated velocity from

subdomain A at the intermediate steps as done by Gravouil and Combescure [93].

In order to solve the system of equations (4.77), (4.79) and (4.80) we split the kinematic

quantities from subdomain A into two parts:

UA
m = VA

m + WA
m (4.81)

where VA
m = [V̈ A

m , V̇ A
m , V A

m]T and WA
m = [Ẅ A

m , Ẇ A
m , W A

m]T . The quantities in VA
m are com-

puted from external forces only (free problem):

MAVA
m = PA

m − NAUA
0 (4.82)

96

and the quantities in WA
m are computed from interface reactions only (link problem):

MAWA
m = −CAΛm (4.83)

Note that by summing the above contributions, the original equation (4.77) for subdomain

A is recovered:

MA
(
VA

m + WA
m

)
= MAUA

m = PA
m − NAUA

0 − CAΛm (4.84)

Once the free problem given by eqn. (4.82) has been solved, one can compute the state

variables for subdomain A at the intermediate time steps tj by linearly interpolating between

t0 and tm as:

VA
j =

(
1− j

m

)
UA

0 +

(
j

m

)
VA

m (4.85)

Similarly, one can linearly interpolate for WA
j between 0 and WA

m:

WA
j =

(
j

m

)
WA

m (4.86)

Note again that by summing the above two contributions we obtain the state for subdomain

A at tj as linearly interpolated between t0 and tm:

VA
j + WA

j = UA
j =

(
1− j

m

)
UA

0 +

(
j

m

)
UA

m (4.87)

Knowing the free state at tj one can compute the unbalanced free interface reaction at tj

defined as:

Sj ≡ CA
(
P A

j −MAV̈ A
j −KAV A

j

)
∀j ∈ [1, 2, · · · , m] (4.88)

which is the amount by which subdomain A is out of force equilibrium at tj under external

97

forces only. Note that Sm = 0 from (4.82). Substituting expression (4.85) above we get:

Sj =

CA

[(
j

m

)(
P A

m −MAV̈ A
m −KAV A

m

)
+

(
1− j

m

)(
P A

0 −MAÜA
0 −KAUA

0

)]
+ CA

[
P A

j −
(

1− j

m

)
P A

0 −
(

j

m

)
P A

m

] (4.89)

Since P A
0 −MAÜA

0 −KAUA
0 = CAT

Λ0 this simplifies to:

Sj =

(
1− j

m

)
Λ0 + CA

[
P A

j −
(

1− j

m

)
P A

0 −
(

j

m

)
P A

m

]
(4.90)

Similar to the free problem, we can define the unbalanced link interface reaction as:

Tj ≡ −CA
(
MAẄ A

j + KAW A
j

)
−Λj ∀j ∈ [1, 2, · · · , m] (4.91)

which is the amount by which subdomain A is out of force equilibrium at tj under interface

reactions only. Note that for equilibrium at tj we must have Sj + Tj = 0:

Sj + Tj = CA
(
P A

j −MAÜA
j −KAUA

j

)
−Λj = 0 ∀j ∈ [1, 2, · · · , m] (4.92)

which is obtained by premultiplying the equilibrium equation for subdomain A at tj by CA.

Here we use the identity:

CkCkT

= IΛ (4.93)

where IΛ is an identity matrix of dimension L, the size of the interface. Substituting equation

(4.86) in (4.91), we obtain:

Tj = −
(

j

m

)
CA

(
MAẄ A

m + KAW A
m

)
−Λj ∀j ∈ [1, 2, · · · , m] (4.94)

98

and from (4.83), we obtain:

MAẄ A
m + KAW A

m = −CAT

Λm (4.95)

Substituting (4.95) in (4.94), we get:

Tj =

(
j

m

)
Λm −Λj ∀j ∈ [1, 2, · · · , m] (4.96)

Using Sj = −Tj, one can compute Λj as:

Λj = Sj +

(
j

m

)
Λm ∀j ∈ [1, 2, · · · , m] (4.97)

Substituting expression (4.90) above one obtains:

Λj =

[(
1− j

m

)
Λ0 +

(
j

m

)
Λm

]
+ CA

[
P A

j −
(

1− j

m

)
P A

0 −
(

j

m

)
P A

m

]
(4.98)

Using (4.97), we can now write the equation of motion for subdomain B (4.79) as:

MBUB
j +

(
j

m

)
CBΛm = PB

j − NBUB
j−1 − CBSj ∀j ∈ [1, 2, · · · , m] (4.99)

Following the notation of Section 4.1, the above equation can be written in matrix form as:

MB 1
m

CB

NB MB 2
m

CB

.

NB MB CB

UB
1

UB
2

...

UB
m

Λm

=

PB
1 − NB UB

0 − CBS1

PB
2 − CBS2

...

PB
m − CBSm

(4.100)

We can write the final system of equations to be solved by appending equations (4.77) and

99

(4.80) to the above as:

MB 1
m

CB

NB MB 2
m

CB

.

NB MB CB

MA CA

BB BA 0

UB
1

UB
2

...

UB
m

UA
m

Λm

=

PB
1 − NB UB

0 − CBS1

PB
2 − CBS2

...

PB
m − CBSm

PA
m − NA UA

0

0

(4.101)

where Bk =

[
0 Ck 0

]
. Note that the first block represents the system of equations for

subdomain B, the second block for subdomain A and the last row imposes the continuity of

velocity constraint at the final time step.

4.4.3 Solution Procedure

Equation (4.101) can be solved using a bordered system approach. The system is divided

along the bold lines shown in eqn. (4.101) as:

 M C

B 0

 U

Λm

 =

 P

0

 (4.102)

Let

U = V + W where V = M−1P ; W = −YΛm and Y = M−1C (4.103)

Note that the first row in equation (4.102) is satisfied automatically, which can be demon-

strated as follows:

MU + CΛm = P ⇒ MV + MW + CΛm = P ⇒ (MV − P) = (MY − C)Λm (4.104)

100

The second row is used for computing the interface reactions:

BU = 0 ⇒ BV + BW = 0 ⇒ [BY]Λm = BV (4.105)

Thus, to solve the system, one must first compute V from eqn. (4.103) then solve for Λm

from eqn. (4.105) and finally update the solution with W from eqn. (4.103).

Computing V.

Let us first compute V from the equation MV = P, which can be written as:

MB

NB MB

.

NB MB

MA

VB
1

VB
2

...

VB
m

VA
m

=

PB
1 − NBUB

0 − CBS1

PB
1 − CBS2

...

PB
m − CBSm

PA
m − NAUA

0

(4.106)

This system can be solved by first advancing the solution for subdomain A by ∆T under

external loads only (free problem). Then, the unbalanced free interface reactions Sj can be

computed at the intermediate time steps from eqn. (4.88) using the solution from subdomain

A. Finally, one can solve the free problem in subdomain B by time stepping it m times

through steps of ∆t each under external forces and Sj, j varying from 1 to m.

101

Computing Y.

Next we compute Y from the equation MY = C, which has the form:

MB

NB MB

.

NB MB

MA

YB
1

YB
2

...

YB
m

YA
m

=

1
m

CB

2
m

CB

...

CB

CA

(4.107)

This system can be solved for YA
m by applying a unit load to one shared degree of freedom at a

time and advancing by a single time step ∆T from complete zero initial conditions. Similarly,

for subdomain B, YB
j s can be computed by applying a linearly varying load (ramped up to

unity in m time steps of ∆t) at the shared degrees of freedom, one at a time.

Computing interface reactions Λm.

The interface system matrix [BY] in eqn. (4.105) can be computed as:

[
0 · · · 0 BB BA

]

YB
1

YB
2

...

YB
m

YA
m

= BBYB

m + BAYA
m = CAẎ A

m + CBẎ B
m (4.108)

Note that this system matrix is exactly the same as that obtained in the GC method for the

case ∆T = ∆t. For multi-time-step cases, the contribution of subdomain A is the same but

subdomain B is advanced further in time. The right hand side vector {BV} for the interface

102

equation (4.105) is also computed similarly:

[
0 · · · 0 BB BA

]

VB
1

VB
2

...

VB
m

VA
m

= BBVB

m + BAVA
m = CAV̇ A

m + CBV̇ B
m (4.109)

Thus the final interface equation to be solved takes the form:

[H] {Λm} = {CAV̇ A
m + CBV̇ B

m } (4.110)

where H = CAẎ A
m + CBẎ B

m . Having computed the correct interface reaction forces from

eqn. (4.110), one can now update the free solution computed previously.

Computing W.

Finally we can evaluate W as:

W = −YΛm = −

YB
1

YB
2

...

YB
m

YA
m

Λm (4.111)

Using this W the solution is updated as U = V + W and this process is repeated over for the

next cycle of time step ∆T .

One may choose to update only the final solution and move to the next time step.

Updating the intermediate solutions does not have any effect on the coupling method and

is necessary only for post-processing.

103

4.4.4 Final Coupling Algorithm

The final multi-time-step coupling algorithm, shown in Figure 4.7, can be presented in

three stages:

Predictor Stage.

Solve the free problem in subdomain A by timestepping once through ∆T under ex-

ternal loads only (Equations (4.82),(4.106)). Solve the free problem in subdomain B by

timestepping m times through time steps of ∆t each under external loads and unbalanced

free interface reactions from subdomain A (Equation (4.106)).

Interface Solve.

Solve for the interface reaction Λm at the final time step from equation (4.110). Compute

the interface reaction Λj at the intermediate time steps using eqn. (4.97).

Corrector Stage.

Update the solution for subdomain A using eqn. (4.83) and for subdomain B using eqn.

(4.111)

Note that, unlike the GC method, one does not need to solve for interface reactions at

every intermediate time step and this leads to much greater computational efficiency. The

present multi-time-step coupling method can be extended for multiple subdomain cases also

following the derivation presented above.

4.4.5 Starting Procedure

Although one does not need any special starting procedure for the present algorithm, it

must be mentioned that the initial acceleration calculations for the Newmark time stepping

104

Figure 4.7: Comparison of the GC method with the current multi-time-step coupling algo-
rithm.

schemes must be done on the undecomposed system as:

Ü0 = M−1 (P0 −KU0) (4.112)

Once the state variables for all the degrees of freedom in the original structure have been

computed, one can partition the mesh accordingly and start the multi-time-step coupling

algorithm as detailed above.

4.5 Stability Analysis

The stability analysis is carried out using the energy method (see Chapter 9, [11]). We

will prove that the change in energy due to our coupling algorithm over the time step t0 to tm

is identically zero. First, we define the undivided forward difference and average operators

as:

[xj−1] ≡ xj − xj−1 〈xj−1〉 ≡ 1
2
(xj + xj−1)

[[x0]] ≡ xm − x0 〈〈x0〉〉 ≡ 1
2
(xm + x0)

(4.113)

105

for ∆t and ∆T time steps respectively. Following the derivation presented in [11], we can

define the change in energy for subdomains A and B over timesteps ∆T and ∆t, respectively,

as:

E A
0 ≡ [[TA(ÜA

0)]] + [[UA(U̇A
0)]] = −D([[ÜA

0]]) + EA
Λ ([[U̇A

0]], [[Λ0]]) (4.114)

and

E B
j−1 ≡ [TB(ÜB

j−1)] + [UB(U̇B
j−1)] = −D([ÜB

j−1]) + EB
Λ ([U̇B

j−1], [Λj−1]) (4.115)

where

T k(x) ≡ 1
2
xT Akx

Uk(x) ≡ 1
2
xT Kkx

Dk(x) ≡ (γk − 1
2
)xT Akx

Ek
Λ(x, λ) ≡ 1

∆tk
xT CkT

λ

(4.116)

and

Ak ≡M k + ∆t2k

(
βk −

γk

2

)
Kk (4.117)

The change in energy for the total system from t0 to tm can then be computed as:

E = E A
0 +

m∑
j=1

E B
j−1 = −D([[ÜA

0]])−
m∑

j=1

D([ÜB
j−1]) + EΛ (4.118)

where

EΛ = EA
Λ ([[U̇A

0]], [[Λ0]]) +
m∑

j=1

EB
Λ ([U̇B

j−1], [Λj−1]) (4.119)

A method is considered to be numerically stable if the total energy change E between time

steps t0 and tm under zero external loads is less than or equal to zero.

In our case, it suffices to show that for E ≤ 0 the energy change due to the coupling at

106

the interface EΛ must be less than or equal to zero. It is evident from equation (4.118) that

the change in energy E , would then become a sum of negative terms. Using eqn. (4.97), we

can write:

[Λj] = Λj −Λj−1 = (Sj − Sj−1) +

(
1

m

)
Λm (4.120)

Thus, from (4.119) we get:

EΛ =
1

m∆t

(
U̇A

m − U̇A
0

)T

CAT

(Λm −Λ0) +
1

m∆t

(
m−1∑
j=0

[U̇B
j]T

)
CBT

Λm

+
1

∆t

m−1∑
j=0

(
[U̇B

j]T CBT

[Sj]
) (4.121)

Note that:
m−1∑
j=0

[U̇B
j] = [[U̇B

0]] = U̇B
m − U̇B

0 (4.122)

Thus, EΛ can be further simplified to:

EΛ =
1

m∆t

((
CAU̇A

m + CBU̇B
m

)
−
(
CAU̇A

0 + CBU̇B
0

))
Λm

− 1

m∆t

(
U̇A

m − U̇A
0

)T

CAT

Λ0 +
1

∆t

m−1∑
j=0

(
[U̇B

j]T CBT

[Sj]
) (4.123)

The first term is zero because of the continuity of velocities constraint at t0 and tm. The

second term can be simplified using equations (4.88) for Sj (noting that P A
j = 0) as:

[Sj] = −CA
(
MA[V̈ A

j] + KA[V A
j]
)

(4.124)

Since V̈ A
j and V A

j are interpolated linearly between t0 and tm, we have:

[V A
j] =

1

m

(
V A

m −UA
0

)
; [V̈ A

j] =
1

m

(
V̈ A

m − ÜA
0

)
(4.125)

107

Substituting (4.125) into (4.124), we get:

[Sj] =−CA

(
1

m
MA

(
V̈ A

m − ÜA
0

)
+

1

m
KA

(
V A

m −UA
0

))
=− 1

m
CA

(
MAV̈ A

m + KAV A
m −MAÜA

0 −KAUA
0

)
=

1

m
CA

(
MAÜA

0 + KAUA
0

)
=− 1

m
CA

(
CAT

Λ0

)
= − 1

m
Λ0

(4.126)

since Sm = −MAV̈ A
m −KAV A

m = 0 and CACAT
= IΛ.

Substituting (4.126) into (4.123) we get:

EΛ =
1

m∆t

((
CAU̇A

m + CBU̇B
m

)
−
(
CAU̇A

0 + CBU̇B
0

))
Λm

− 1

m∆t

(
U̇A

m − U̇A
0

)T

CAT

Λ0 −
1

m∆t

(
m−1∑
j=0

[U̇B
j]T

)
CBT

Λ0

(4.127)

Again, using (4.122), we get:

EΛ =
1

m∆t

[(
CAU̇A

m + CBU̇B
m

)
−
(
CAU̇A

0 + CBU̇B
0

)]
(Λm −Λ0) = 0 (4.128)

This shows that the coupling algorithm neither adds nor removes energy from the coupled

system, hence is unconditionally stable and energy preserving. Thus, one can couple ar-

bitrary Newmark schemes with different time steps using the present method and expect

the stability characteristics of individual subdomains to be preserved. We also note that

since EΛ is exactly zero the current method does not exhibit any dissipation unlike the GC

method.

108

4.6 Numerical Results

Test problems that were solved to validate the present coupling method include a split

single degree of freedom (SDOF) system, a 1-D fixed-free bar problem with a step end load

and a 2-D cantilever beam problem.

4.6.1 The Split SDOF Problem

Figure 4.8: A split SDOF problem.

The simplest multi-time-step coupling problem is the split SDOF system. A SDOF mass

and spring system is split into two SDOF mass and spring systems A and B linked by an

interface reaction Λ as shown in Figure 4.8. The systems A and B can be integrated with

different time steps and different Newmark schemes. In the present problem the following

values for the system variables were chosen: ma = 1.0×10−6, mb = 2.0×10−6, ka = 2.0×104

and kb = 3.0 × 104. The system was excited by a step loading function going from 0 to

fa = 3.0 and fb = 1.0 at t = 0.

Figures 4.9 and 4.10 show the results for a case of time step ratio m = 2 between A

and B. The time steps chosen were ∆T = 8.0 × 10−6 and ∆t = 4.0 × 10−6 with Newmark

parameters (γA, βA) = (γB, βB) = (0.5, 0.25). Thus we couple the implicit constant average

acceleration method with itself here. The critical time step (∆tcr) for the central difference

scheme in system B is 1.63 × 10−5. Note that the time steps for systems A and B were

109

Figure 4.9: Split SDOF problem: Velocity response for m = 2;
∆T/∆tcr = 0.5; ∆t/∆tcr = 0.25.

Figure 4.10: Split SDOF problem: Interface reactions for m = 2;
∆T/∆tcr = 0.5; ∆t/∆tcr = 0.25.

110

Figure 4.11: Split SDOF problem: Total energy for m = 2;
∆T/∆tcr = 0.5; ∆t/∆tcr = 0.25; E0 = 2.67× 106.

chosen so coarse in order to distinguish the different curves. The velocity response in Figure

4.9 shows that there is significant amplitude decay in the GC method while the present

method does not exhibit any dissipation. One may also note that the velocities from the two

subdomains match exactly at intervals of ∆T with the computed response from subdomain A

being linearly interpolated between the interval. Figure 4.10 compares the interface reactions

computed by the present method with those from the GC method.

It is clear that the present method computes interface reactions that are much closer to

their exact value whereas the interface reactions from the GC method show large oscillations

around the exact value. A comparison of total energy defined using the norms given in

equation (4.116) as

Etotal ≡
(
TA(ÜA

n) + UA(U̇A
n)
)

+
(
TB(ÜB

n) + UB(U̇B
n)
)

(4.129)

is presented in Figure 4.11 for the above problem. This confirms the result from the stability

111

Figure 4.12: Split SDOF problem: Velocity response for m = 5;
∆T/∆tcr = 0.3; ∆t/∆tcr = 0.06.

Figure 4.13: Split SDOF problem: Interface reactions for m = 5;
∆T/∆tcr = 0.3; ∆t/∆tcr = 0.06.

112

Figure 4.14: Split SDOF problem: Total energy for m = 5;
∆T/∆tcr = 0.3; ∆t/∆tcr = 0.06; E0 = 2.67× 106

analysis that the present coupling method exactly preserves the total energy of the system.

Similar results for a time step ratio m = 5 are presented in Figures 4.12 - 4.14. The

time steps used here are ∆T = 5.0× 10−6 and ∆t = 1.0× 10−6. One can again see that the

velocity response from the GC method decays and the interface tractions oscillate around

the exact value while the present method performs much better. One may also note that

subdomain B is integrated with a much finer time step here and shows smooth behavior at

the crests of the waves while subdomain A with a coarse time step shows distinct steps in its

response. This shows that using the present method one can integrate the two subdomains

with the desired accuracy for each of them.

4.6.2 1-D Fixed-free Bar Problem

In this problem, a 1-D bar fixed at one end and free at the other was meshed uniformly

with 2 node linear bar elements and partitioned at the mid point as shown in Figure 4.15.

113

Figure 4.15: 1-D fixed free bar with a step end load.

The parameters chosen for the problem were: mass density ρ = 1.0×10−4, Young’s modulus

E = 1.0 × 104, total length L = 1.0, sectional area A = 0.2, end load P0 = 10.0, ∆tA =

∆T = 2.0 × 10−5, ∆tB = ∆t = 2.0 × 10−6, (γA, βA) = (0.5, 0.25) and (γB, βB) = (0.5, 0.0).

Thus, we choose to solve the above problem by treating half the mesh implicitly using the

constant average acceleration method and half explicitly using the central difference method.

Note that the critical time step for the central difference method ∆tcr is 1.0× 10−5 and the

time step ratio between the subdomains m is 10 with ∆T/∆tcr = 2.0 and ∆t/∆tcr = 0.2.

Figures 4.16 and 4.17 show the end displacement and interface reactions respectively

Figure 4.16: End displacement response for 1-D fixed-free bar under step load; m = 10

114

Figure 4.17: Interface reactions for 1-D fixed-free bar under step load; m = 10

for the fixed-free bar under a step end load. We have used coarse time steps and plotted

the displacement response starting at t = 0.00465 to accentuate the dissipation due to the

GC method. The dissipation is also visible in the interface reactions as its sharp features

are smoothened out by the GC method while the present method preserves the average

magnitude of the response. Note that the overshoot and undershoot around the exact value

are obtained in the Newmark schemes too and are not an artifact of the present coupling

method.

4.6.3 2-D Cantilever Beam Problem

In this section, we consider a 2-D cantilever beam problem with a step end load as shown

in Figure 4.18. The beam is meshed uniformly with 4 node quadrilateral elements and

partitioned as shown. Subdomain A is integrated with a time step ∆T = 8.0 × 10−5 and

Newmark parameters (γA, βA) = (0.5, 0.25) while subdomain B is integrated with ∆t = 8.0×

10−6 and (γB, βB) = (0.5, 0.25). Thus, we couple the constant average accelaration method

115

Figure 4.18: 2-D cantilever beam with a step end load.

with itself with a time step ratio m = 10. This particular partition was chosen so that the

ratio of the number of degrees of freedom along the interface to the total number of degrees

of freedom in the problem be sufficiently large so as to bring out the dissipation exhibited by

Figure 4.19: Vertical displacement of the mid point on the free edge for the 2-D beam
problem, m = 10.

116

the GC method. The parameter values used for this problem are: beam dimensions L = 1.0;

d = 0.4, Young’s modulus E = 1.0 × 104, density ρ = 1.0 × 10−4, end load P0 = 20.0

distributed over the free edge. For comparison, we also solve the same problem without

partitioning using the constant average acceleration method with a time step of 8.0× 10−5.

Figure 4.19 shows that the GC method is dissipative even for larger problems when the size

of the interface is comparable to the total problem size while the present method preserves

the total energy of the component subdomains.

4.6.4 Rocket Case with Cracks

A rocket case with one longitudinal and one tangential crack is shown in Figure 4.20.

The mesh is decomposed into 2 subdomains such that the 4 crack tip zones together form

a single disconnected subdomain and the rest of the mesh form the other subdomain. The

case is modeled with a linear elastic material model representing steel and a time step ratio

of 10 was used between the subdomains.

Figure 4.20: Mesh decomposition of the rocket case.

117

The rocket case is loaded with a sudden head end pressure simulating the start of com-

bustion and the response of the stress wave passing the cracks is shown in Figure 4.21. Note

that the coupling is seamless and there is no artifact of the interface around the crack tips.

Figure 4.21: Linear elastic response of cracked rocket case to sudden head end pressure.

4.7 Conclusion

The present multi-time-step coupling method provides a powerful approach to solving

large-scale structural dynamics problems very efficiently and accurately. Using this coupling

method, one can divide a large mesh into smaller subdomains and integrate them inde-

pendently with different numerical schemes and time steps. This method also affords the

possibility of solving different subdomains in parallel with minimal communication needed

between them. If the subdomains are chosen carefully, one can solve large-scale problems

much faster in time compared to traditional time integration schemes with a uniform time

step for the entire mesh.

118

The present coupling method has been shown to be unconditionally stable as long as the

stability requirements of the individual subdomains are met. This means that one should be

able to couple the subdomains with as large a time step ratio between them as one desires. It

has also been shown that the present method preserves the total energy from its component

subdomains while the GC method exhibits significant dissipation when the timestep ratio

between the subdomains is high or the size of the interface is comparable to the problem size.

Since the energy contribution due to the coupling is zero, one can also integrate individual

subdomains to any degree of accuracy one desires.

The most important feature of the present method is that it is computationally far more

efficient than the GC method. This is made possible by enforcing the continuity of velocities

constraint only at the maximum time step in the mesh. Thus, one is required to solve for

the interface reactions at the maximum time step rather than the minimum time step as in

the case of the GC method. This makes the present coupling method m (time step ratio)

times faster than the GC method.

Chapter 5 discusses the formulation of the present multi-time-step coupling method for

non-linear problems.

119

Chapter 5

Extension to Non-linear Systems

A multi-time-step domain decomposition and coupling method is formulated for non-

linear structural dynamics using Newmark schemes. In this method, a large global mesh is

partitioned into sub-meshes, each consisting of elements with similar time-step requirements.

The different sub-meshes are solved independently and then coupled together in a consis-

tent manner to obtain the global solution. This allows one to integrate each subdomain of

the global mesh with an appropriate time-step and/or time stepping scheme. The present

method is an extension of the method proposed earlier for linear systems with two sub-

domains (Ref. [95]) to analyze non-linear systems with multiple subdomains and multiple

time-steps. The coupling is achieved through Lagrange multipliers by imposing continuity of

velocity across the interfaces between subdomains. We show that the coupling method ex-

actly preserves the total system energy and inherits the stability and accuracy characteristics

of its component subdomains. It also exhibits seamless integration between the subdomains

with minimal interface computation. Results from several benchmark problems verify these

properties and are used to compare its performance with respect to other coupling methods.

5.1 Introduction

Physical problems that involve multiple fields or span over a wide range of length and/or

time scales are ideal candidates for coupled simulations. Non-linear structural dynamics of

a large and complex system is one such problem. It involves capturing not only the global

response of the structure but also the localized fine scale phenomena such as crack prop-

120

agation and plastic yielding. This requires a very fine spatial and temporal discretization

in certain regions of interest within the domain whereas a relatively coarser discretization

suffices elsewhere. Most commonly, a finite element mesh is used to discretize the spatial

domain and a finite difference time stepping scheme is used for numerical time integration.

The time-step of such schemes is usually limited by a stability condition or an accuracy

requirement of individual elements. In large meshes, the differences in element sizes and

associated time-steps can span over multiple orders of magnitude. Traditionally, however,

the time step for the entire mesh is limited by the smallest time-step in the domain. This

is severely restrictive and computationally very inefficient. In order to overcome these lim-

itations, one must solve these regions or subdomains separately with different time steps

and/or integration schemes and then couple the solutions together.

Domain decomposition methods [96] such as the finite element tearing and interconnect-

ing (FETI) method [81] are commonly used to partition large finite element meshes into

subdomains. FETI methods employ element partitioning and use Lagrange multipliers to

impose continuity conditions at the interface of shared nodes. Gravouil and Combescure [93]

proved that imposing continuity of velocities at the interface led to a stable algorithm but

their method was shown to be dissipative. Prakash and Hjelmstad [95] developed a multi-

time-step coupling method which is stable, energy preserving and computationally more

efficient than other methods currently available in the literature. The idea of unbalanced in-

terface reactions proposed in [95] is extended to unbalanced interface residuals for non-linear

subdomains. The non-linear multi-time-step coupling method exhibits the properties of sta-

bility, energy preservation and computational efficiency similar to its linear counterpart. In

addition, an iterative PCG method is also presented to solve the interface problem. This is

especially suitable for solving non-linear problems.

121

5.2 Non-linear Multi-time-step Coupling Method

The semi-discrete equations governing the dynamics of a structural domain Ω decomposed

into 2 subdomains ΩA and ΩB are given by:

MAÜA + RA(U̇A, UA) + CAT
Λ = P A (5.1)

MBÜB + RB(U̇B, UB) + CBT
Λ = P B (5.2)

CAU̇A + CBU̇B = 0 (5.3)

where M k, Rk, U k and P k denote the mass matrix, internal force vector, displacement

vector and the load vector respectively associated with subdomain Ωk, k = A, B. Ck is the

boolean connectivity matrix and Λ is the vector of Lagrange multipliers associated with the

FETI decomposition. Similar to the linear formulation, we choose to impose continuity of

velocities between the subdomains through equation (5.3). In order to simplify the formu-

lation of the multi-time-step coupling method for non-linear systems, only two subdomains

are considered here. The present method can be extended for multiple subdomains using a

recursive domain decomposition approach along the lines of [97].

Subdomains A and B are integrated with time steps ∆T and ∆t respectively where

∆T = m∆t for some integer multiple m. The Newmark parameters for the two subdomains

are (γA, βA) and (γB, βB). We will consider stepping the solution from a known state t0 to

tm = t0 + ∆T . This procedure can then be repeated to advance the solution for as many

time steps as desired. We will follow the block matrix notation for multi-time-step quantities

described in section §4.1.

The residual equations for stepping subdomain A from time step 0 to m can be written

122

as:

GAa
m (UA

m,Λm) ≡ MAÜA
m + RA(U̇A

m, UA
m) + CAT

Λm − P A
m (5.4)

GAv
m (UA

m) ≡ U̇A
m −

[
U̇A

0 + ∆T (1− γA) ÜA
0 + γA∆T ÜA

m

]
(5.5)

GAd
m (UA

m) ≡ UA
m −

[
UA

0 + ∆T U̇A
0 + ∆T 2

(
1
2
− βA

)
ÜA

0 + βA∆T 2ÜA
m

]
(5.6)

Note that only equation (5.4) contains a non-linear term but since the solution is coupled

through the Newmark relations and the continuity of velocities constraint, it is better to

write all the equations in residual form. The residual equations to advance subdomain B

from time step j − 1 to j can be written as:

GBa
j (UB

j ,Λj) ≡ MBÜB
j + RB(U̇B

j , UB
j) + CBT

Λj − P B
j (5.7)

GBv
j (UB

j , UB
j−1) ≡ U̇B

j −
[
U̇B

j−1 + ∆t (1− γB) ÜB
j−1 + γB∆tÜB

j

]
(5.8)

GBd
j (UB

j , UB
j−1) ≡ UB

j −
[
UB

j−1 + ∆t U̇B
j−1 + ∆t2

(
1
2
− βB

)
ÜB

j−1 + βB∆t2ÜB
j

]
(5.9)

where j ∈ {1, 2, · · ·m}. As in the linear formulation, we will enforce continuity of velocities

at the final time step m through the residual equation:

GΛ
m(UA

m, UB
m) ≡ CAU̇A

m + CBU̇B
m (5.10)

Residual equations for the interface reactions at the intermediate time steps are obtained

from the equilibrium equation of subdomain A at the interface:

GΛ
j (UA

j ,Λj) ≡ CA
[
MAÜA

j + RA(U̇A
j , UA

j) + CAT

Λj − P A
j

]
(5.11)

where j ∈ {1, 2, · · · (m − 1)}. In addition, we need to interpolate the state variables of

123

subdomain A between t0 and tm for every intermediate time step tj:

GAa
j (UA

j , UA
m) ≡ ÜA

j −
(

1− j

m

)
ÜA

0 −
(

j

m

)
ÜA

m (5.12)

GAv
j (UA

j , UA
m) ≡ U̇A

j −
(

1− j

m

)
U̇A

0 −
(

j

m

)
U̇A

m (5.13)

GAd
j (UA

j , UA
m) ≡ UA

j −
(

1− j

m

)
UA

0 −
(

j

m

)
UA

m (5.14)

5.2.1 Linearization

Assuming that the state at some Newton iteration i is known, we can linearize each of

the above residual equations about that state using the Newton’s method:

G(xi + ∆xi) ≈ G(xi) +∇G(xi) ∆xi = 0 (5.15)

which can be solved for ∆xi to update the solution as:

xi+1 = xi + ∆xi (5.16)

The process is repeated by incrementing the iteration number i← i + 1 until the residual is

less than some desired tolerance.

Equations of motion for subdomains A and B can be linearized (see section §2.8.2) for

iteration i around an assumed state ÜAi

j , ÜBi

j and Λi
j for 1 ≤ j ≤ m as:

M k∆Ü ki

j +
∂Rk

j

∂Ü k
j

∣∣∣∣∣
Üki

j

∆Ü ki

j + CkT

∆Λi
j = −Gk(Ü ki

j ,Λi
j) (5.17)

The tangent term can be computed as:

∂Rk
j

∂Ü k
j

=
∂Rk

j

∂U̇ k
j

∂U̇ k
j

∂Ü k
j

+
∂Rk

j

∂U k
j

∂U k
j

∂Ü k
j

(5.18)

= γk∆tkDk
j + βk∆tk

2
Kk

j (5.19)

124

Defining the tangent damping matrix as:

Dki

j ≡
∂Rk

j

∂U̇ k
j

∣∣∣∣∣
Uki

j

(5.20)

and the tangent stiffness matrix as:

Kki

j ≡
∂Rk

j

∂U k
j

∣∣∣∣∣
Uki

j

(5.21)

The linearized equations (5.4)-(5.9) can be expressed compactly as:

MAi

m ∆UAi

m + CA∆Λi
m = −GAi

m (5.22)

MBi

j ∆UBi

j + NB ∆UBi

j−1 + CB∆Λi
j = −GBi

j (5.23)

where j ∈ {1, 2, · · ·m} and

Mki

j =

M k Dki

j Kki

j

−γk∆tkI
k Ik 0

−βk∆t2kI
k 0 Ik

 ; ∆Uki

j =

∆Ü ki

j

∆U̇ ki

j

∆U ki

j

Nk =

0 0 0

−∆tk(1− γk)I
k −Ik 0

−∆t2k(
1
2
− βk)I

k −∆tkI
k −Ik

 ; Ck =

CkT

0

0

GAi

m =

GAa

m (UAi

m ,Λi
m)

GAv
m (UAi

m)

GAd
m (UAi

m)

 ; GBi

j =

GBa

j (UBi

j ,Λi
j)

GBv
j (UBi

j , UBi

j−1)

GBd
j (UBi

j , UBi

j−1)

(5.24)

Note that ∆UAi

0 = 0 and ∆UBi

0 = 0 since they are known from the previous time step. The

125

equations for linear interpolation of the state for subdomain A can be written compactly as:

IA ∆UAi

j −
(

j

m

)
IA ∆UAi

m = −GAi

j (5.25)

The interface equations at the intermediate time steps can also be written in the compact

notation as:

RAi

j ∆UAi

j + IΛ∆Λi
j = −GΛi

j (5.26)

where RAi

j ≡ CA

[
MA DAi

j KAi

j

]
and GΛi

j ≡ GΛ
j (UAi

j ,Λi
j) for j ∈ {1, 2, · · · (m− 1)}.

Note that IΛ is an identity matrix with dimension equal to the interface size. Lastly the

interface equation at the final time step is:

BA∆UAi

m + BB∆UBi

m = −GΛi

m (5.27)

where Bk ≡
[

0 Ck 0

]
and GΛi

m ≡ GΛ
m(UAi

m , UBi

m).

5.2.2 Solution

In order to solve the above system of equations efficiently in a time-stepping manner,

we will derive a relationship between the incremental interface reactions at the intermediate

time steps ∆Λi
j and the incremental interface reaction at the final time step ∆Λi

m. For this

purpose, we assemble the linearized equations of the previous section into a big matrix to

solve them using a bordered approach:

MBi

CB

MAi
CA

BBi
BAi

H

∆UBi

∆UAi

∆Λi

 =

−GBi

−GAi

−GΛi

 (5.28)

126

where

MBi

=

MBi

1

NB MBi

2

.

NB MBi

m

; CB =

CB

CB

. . .

CB

(5.29)

MAi

=

IA −(1
m

)IA

IA −(2
m

)IA

.

IA −(m−1
m

)IA

MAi

m

; CA =

0 · · · 0 0

... · · · ...
...

... · · · ... 0

0 · · · 0 CA

(5.30)

BBi

=

0 · · · 0 0

... · · · ...
...

... · · · ... 0

0 · · · 0 BB

; BAi

=

RAi

1

RAi

2

. . .

RAi

m−1

BA

(5.31)

H =

IΛ

IΛ

. . .

IΛ

0

; ∆Λi =

∆Λi
1

∆Λi
2

...

∆Λi
m−1

∆Λi
m

(5.32)

∆Uki

=

[
∆Uki

1 ∆Uki

2 · · · ∆Uki

m

]T

; Gki

=

[
Gki

1 Gki

2 · · · Gki

m

]T

(5.33)

127

Let

∆Uki

= ∆Vki

+ ∆Wki

where ∆Vki

= −
[
Mki
]−1

Gki

∆Wki

= −Yki

∆Λi ; Yki

=
[
Mki
]−1

C

(5.34)

Similar to ∆Uki , ∆Vki and ∆Wki can also be expressed as:

∆Vki

=

∆Vki

1

∆Vki

2

· · ·

∆Vki

m

; ∆Wki

=

∆Wki

1

∆Wki

2

· · ·

∆Wki

m

(5.35)

For subdomain B, YBi is given by:

YBi

= [MBi

]−1CB

=

MBi

1

NB MBi

2

.

NB MBi

m

CB

CB

. . .

CB

=

YBi

11

YBi

21 YBi

22

...
... . . .

YBi

m1 YBi

m2 · · · YBi

mm

(say)

(5.36)

128

Similarly, for subdomain A, YAi is given by:

YAi

= [MAi

]−1CA

=

IA −(1
m

)IA

IA −(2
m

)IA

.

IA −(m−1
m

)IA

MAi

m

0 · · · 0 0

... · · · ...
...

... · · · ... 0

0 · · · 0 CA

=

0 · · · 0 YAi

1

... · · · ...
...

... · · · ... YAi

m−1

0 · · · 0 YAi

m

(5.37)

From the last row of equation (5.28), ∆Λi can be computed as:

[
H−

∑
k=A,B

Bki

Yki

]
∆Λi = {−GΛi −

∑
k=A,B

Bki

∆Vki} (5.38)

One may verify that the interface matrix on the left of the above equation is given by:

−

−IΛ RAi

1 YAi

1

−IΛ RAi

2 YAi

2

.

−IΛ RAi

m−1YAi

m−1

CBẎ Bi

m1 CBẎ Bi

m2 · · · CBẎ Bi

m(m−1) CBẎ Bi

mm + CAẎ Ai

m

(5.39)

Note that MAi

m YAi

m = CA and thus YAi

m takes the form {Ÿ Ai

m , γA∆T Ÿ Ai

m , βA∆T 2Ÿ Ai

m }T , where

129

Ÿ Ai

m = [M̃Ai

m]−1CAT and M̃Ai

m = [MA + γA∆TDA + βA∆T 2KAi

m]. Thus:

RAi

j YAi

j = (
j

m
)RAi

j YAi

m

= (
j

m
)CA

[
MA DA KAi

j

]
Ÿ Ai

m

γA∆T Ÿ Ai

m

βA∆T 2Ÿ Ai

m

= (

j

m
)CA

[
MA + γA∆TDA + βA∆T 2KAi

j

] [
M̃Ai

m

]−1

CAT

= (
j

m
)CA

[
M̃Ai

j

] [
M̃Ai

m

]−1

CAT

(5.40)

Let

JΛ
j ≡ CA

[
M̃Ai

j

] [
M̃Ai

m

]−1

CAT

(5.41)

Note that if subdomain A is linear over the interval t0 to tm or if explicit integration is used,

then JΛ
j = IΛ. The right hand side of equation (5.38) is given by:

{−GΛi −
∑

k=A,B

Bki

∆Vki} =

−GΛi

1 − RAi

1 ∆VAi

1

−GΛi

2 − RAi

2 ∆VAi

2

...

−GΛi

m−1 − RAi

m−1 ∆VAi

m−1

−GΛi

m − BA ∆VAi

m − BB ∆VBi

m

(5.42)

Define

Si
j ≡ −GΛi

j − RAi

j ∆VAi

j

Si
j =−CA

[
MAÜAi

j + DAU̇Ai

j + RA(UAi

j) + CAT

Λi
j − P A

j

]
−CA

[
MA ∆V̈ Ai

j + DA ∆V̇ Ai

j + KAi

j ∆V Ai

j

] (5.43)

As in the linear case, here also Si
m = 0. Note that ∆VAi

j = j
m

∆VAi

m , if GAi

j are ensured

to be zero apriori which can be done by choosing an initial guess for the Newton-Raphson

130

iterations that satisfies equations (5.12)-(5.14).

Now, we can solve any row j of the interface problem for ∆Λi
j in terms of ∆Λi

m from the

expressions (5.39) and (5.42) as:

∆Λi
j = Si

j +

(
j

m

)
JΛ

j ∆Λi
m (5.44)

Using the above relation, equation (5.28) can be simplified and solved in a time-stepping

manner.

5.3 Implementation

Using the relation (5.44), equation (5.23) can be expressed as:

MBi

j ∆UBi

j + NB ∆UBi

j−1 +

(
j

m

)
CBJΛ

j ∆Λi
m = −GBi

j − CBSi
j (5.45)

The final simplified system to be solved takes the form:

MBi

1
1
m

CBJΛ
1

NB MBi

2
2
m

CBJΛ
2

.

NB MBi

m CBJΛ
m

MAi

m CA

BB BA 0

∆UBi

1

∆UBi

2

...

∆UBi

m

∆UAi

m

∆Λi
m

=

−GBi

1 − CBSi
1

−GBi

2 − CBSi
2

...

−GBi

m − CBSi
m

−GAi

m

−GΛi

m

(5.46)

Note that JΛ
m = IΛ.

Equation (5.46) can be represented again by a bordered system similar to equation (5.28)

131

with the following quantities redefined:

H = 0; ∆Λi = ∆Λi
m; GΛi

= GΛi

m

MAi

= MAi

m ; CA = CA; BAi

= BA; GAi

= GAi

m ; ∆UAi

= ∆UAi

m

BBi

=

[
0 · · · 0 BB

]
; CB =

1
m

CBJΛ
1

2
m

CBJΛ
2

...

CBJΛ
m

; GBi

=

GBi

1 + CBSi
1

GBi

2 + CBSi
2

...

GBi

m + CBSi
m

MBi

and ∆UBi

remain unchanged.

Following the steps in eqn. (5.34), we can compute ∆VAi by solving:

MAi

m ∆VAi

m = −GAi

m (5.47)

∆VAi

j are obtained by linear interpolation. The unbalanced residuals Si
j can then be com-

puted from eqn. (5.43) and transferred to subdomain B which is solved as:

MBi

1

NB MBi

2

.

NB MBi

m

∆VBi

1

∆VBi

2

...

∆VBi

m

=

−GBi

1 − CBSi
1

−GBi

2 − CBSi
2

...

−GBi

m − CBSi
m

(5.48)

Let Vki

j ≡ Uki

j + ∆Vki

j . Thus, ∆Uki

j = ∆Vki

j + ∆Wki

j and Uk(i+1)

j = Vki

j + ∆Wki

j .

132

The Yki matrices can also be computed similarly:

[MAi

m]YAi

m = CA (5.49)

MBi

1

NB MBi

2

.

NB MBi

m

YBi

1

YBi

2

...

YBi

m

=

1
m

CBJΛ
1

2
m

CBJΛ
2

...

CBJΛ
m

(5.50)

It is usually not feasible to compute Yki from the above equation. An iterative approach

will be presented in the following section to overcome this difficulty. First, let us outline the

entire solution procedure.

The interface problem is:

[
BBYBi

m + BAYAi

m

]
{∆Λi

m} = {BB∆VBi

m + BA∆VAi

m + GΛvi

m }

= CA∆V̇ Ai

m + CB∆V̇ Bi

m + GΛ
m(UAi

m , UBi

m)

= CA
(
U̇Ai

m + ∆V̇ Ai

m

)
+ CB

(
U̇Bi

m + ∆V̇ Bi

m

)
⇒ [H]{∆Λi

m} = {CAV̇ Ai

m + CBV̇ Bi

m }

(5.51)

where H ≡ CAẎ Ai

m + CBẎ Bi

m .

Finally, the solution can be updated by computing ∆Wki :

∆WAi

m = −YAi

m ∆Λi
m (5.52)

∆WBi

1

∆WBi

2

...

∆WBi

m

= −

YBi

1

YBi

2

...

YBi

m

∆Λi

m (5.53)

133

5.3.1 Iterative Solution of Interface Problem

Since the size of the interface problem (5.51) can be quite large, it is usually not feasible

to compute and factorize the interface matrix H especially for non-linear systems when

it needs to be done at every Newton-Raphson iteration. Thus, the familiar PCG method

for FETI is employed to solve the multi-time-step interface problem iteratively. The PCG

iteration number is denoted by ν to distinguish it from the non-linear Newton-Raphson

iteration number i.

1. Initialize PCG iteration number ν = 0

Assume ∆Λi
m

0
= 0

ri0 = {CAV̇ Ai

m + CBV̇ Bi

m } −H∆Λi
m

0

di0 = H̃−1ri0

pi0 = di0

(5.54)

2. Iterate for ν = 0, 1, 2 · · · until convergence

ζ iν =
riνT

diν

piνT Hpiν

∆Λi
m

ν+1
= ∆Λi

m

ν
+ ζ iνpiν

riν+1
= riν − ζ iνHpiν

diν+1
= H̃−1riν+1

αiν+1
=

riν+1T
diν+1

riνT diν

piν+1
= diν+1

+ αiν+1
piν

(5.55)

134

where H̃−1 is a suitable preconditioner. An approximate lumped preconditioner can be

defined as:

H̃−1 ≡
∑

k=A,B

1

γk∆tk
CkM̃ kCkT

(5.56)

Note that this is not the same as the conventional FETI lumped preconditioner because of

the different time steps used for subdomains A and B. The matrix-vector products Hpiν =

CAẎ Ai

m piν + CBẎ Bi

m piν can be computed subdomain-wise. Noting that the matrices Ẏ Ai

m

and Ẏ Bi

m are computed from eqns. (5.49) and (5.50), we have:

CAẎ Ai

m piν = BA
[
MAi

m

]−1

{CApiν} (5.57)

which amounts to solving subdomain A for one time step under a load CAT
piν . Similarly

CBẎ Bi

m piν can be obtained from the last row of the expression:

BB

YBi

1

YBi

2

...

YBi

m

piν = BB

MBi

1

NB MBi

2

.

NB MBi

m

−1

1
m

CBJΛ
1 piν

2
m

CBJΛ
2 piν

...

CBJΛ
mpiν

(5.58)

which amounts to solving subdomain B for m time steps under a load CBT
JΛ

j piν at sub-

time-step j for all j ∈ [1, 2, · · · , m]. From (5.41) one may note that:

CBT

JΛ
j piν = CBT

CA
[
M̃Ai

j

] [
M̃Ai

m

]−1

CAT

piν (5.59)

Since the term
[
M̃Ai

m

]−1

CAT
piν in the above expression has already been computed for

subdomain A in equation (5.57), this modified residual calculation is not expensive. Also

note that one can save the quantities ζ iνYAi

m piν and ζ iνYBi

j piν computed above in order to

update the subdomain solutions upon convergence using equations (5.52) and (5.53). Since

135

∆Λi
m = ∆Λi

m
0
+
∑ν∗

ν=0 ζ iνpi
m

ν therefore

∆WAi

m = −YAi

m ∆Λi
m

0 −
ν∗∑

ν=0

ζ iνYAi

m pi
m

ν (5.60)

∆WBi

1

∆WBi

2

...

∆WBi

m

= −

YBi

1

YBi

2

...

YBi

m

∆Λi

m
0 −

ν∗∑
ν=0

ζ iνYBi

1 pi
m

ν

ζ iνYBi

2 pi
m

ν

...

ζ iνYBi

m pi
m

ν

(5.61)

5.3.2 Final Algorithm

The final algorithm for advancing the solution from time t0 to tm is outlined below.

1. Initialize the state variables for subdomains A and B from the converged state for the

previous step. Let the iteration number at convergence of previous step be i∗.

(a) Assume ÜA0

m = ÜAi∗

0 and compute U̇A0

m , UA0

m from (5.5) and (5.6) such that

GAv
m = 0 and GAd

m = 0.

(b) Assume ÜB0

j = ÜBi∗

0 and compute U̇B0

j , UB0

j from (5.8) and (5.9) such that

GBv
j = 0 and GBd

j = 0 for all j ∈ {1, 2, · · · , m}.

(c) Assume Λ0
m = Λi∗

0 .

2. Begin Newton-Raphson iterations i = 0:

(a) Compute the residuals in equation (5.46): GAi

m (UAi

m ,Λi
m), GBi

j (UBi

j ,Λi
j)

and GΛi

m (UAi

m , UBi

m).

(b) Check for convergence ‖GAi

m ‖ < tol, ‖GBi

j ‖ < tol and ‖GΛi

m ‖ < tol. If converged

go to step 3.

(c) Compute the tangent stiffness matrices KAi

j and KBi

j .

(d) Solve for ∆VAi

m from (5.47) and linearly interpolate to obtain ∆VAi

j . Get VAi

j .

136

(e) Compute Si
j from (5.43) and transfer unbalanced residuals to subdomain B:

−GBi

j − CBSi
j.

(f) Solve for ∆VBi

j from (5.48) under the modified residuals. Get VBi

j .

(g) Initialize PCG solution of the interface problem from equations (5.54).

(h) Begin PCG iterations ν = 0:

i. Convergence check: If ‖riν‖ < tol go to step (2i).

ii. Solve for CAẎ Ai

m piν from equation (5.57). Save the increments to ∆WAi

m from

(5.60).

iii. Solve for CBẎ Bi

m piν from the last row of (5.58). Save the increments to

∆WBi

j from (5.61).

iv. Form Hpiν . Compute quantities in equation (5.55).

v. Increment PCG iteration counter ν ← ν+1 and check for maximum iteration

limit. If ν < MAX then go to 2(h)i. else display error “PCG did not

Converge" and stop.

(i) Update the solution vectors:

Uki+1

j = Uki

j + ∆Uki

j , Λi+1
j = Λi

j + ∆Λi
j.

(j) Increment the iteration count i ← i + 1 and check for maximum iteration limit.

If i < MAX then go to (2a) else display error “Newton Loop did not Converge"

and stop.

3. Output and Update quantities for the next time step. Return to calling subroutine.

5.4 Modified Newton Coupling Approach

The non-linear multi-time-step coupling method described above is based on a consistent

linearization of the governing equations. This consistent linearization poses some restrictions

137

on the sequence of computation for the coupling method. For instance, if subdomain A is

non-linear and is integrated implicitly then the unbalanced interface residuals cannot be

computed in advance unlike the linear coupling method. Some modifications similar to

a modified Newton approach lead to significant simplification of the non-linear coupling

method as discussed below.

One may choose to replace the interface constraint for the intermediate time steps (5.11)

with the equation:

GΛ
j (UA

j ,Λj) ≡

CA

[
MAÜA

j +

(
1− j

m

)
RA(U̇A

0 , UA
0) +

(
j

m

)
RA(U̇A

m, UA
m) + CAT

Λj − P A
j

] (5.62)

Linearizing:

CA

[(
j

m

)(
MA∆ÜAi

m + DAi

m ∆U̇Ai

m + KAi

m ∆UAi

m

)
+ CAT

∆Λi
j

]
= −GΛi

j (UAi

j ,Λi
j) (5.63)

⇒
(

j

m

)
RAi

m ∆UAi

m + IΛ∆Λi
j = −GΛi

j (5.64)

Using this relation one can replace BAi in expression (5.31) with:

BAi

=

0 1
m

RAi

m

0 2
m

RAi

m

.

0 m−1
m

RAi

m

BA

(5.65)

138

The interface matrix (5.39) takes the form:

−

−IΛ 1
m

RAi

m YAi

m

−IΛ 2
m

RAi

m YAi

m

.

−IΛ m−1
m

RAi

m YAi

m

CBẎ Bi

m1 CBẎ Bi

m2 · · · CBẎ Bi

m(m−1) CBẎ Bi

mm + CAẎ Ai

m

(5.66)

where RAi

m YAi

m = IΛ. Similarly, the interface right hand side (5.42):

{−GΛi −
∑

k=A,B

Bki

∆Vki} =

−GΛi

1 − 1
m

RAi

m ∆VAi

m

−GΛi

2 − 2
m

RAi

m ∆VAi

m

...

−GΛi

m−1 − m−1
m

RAi

m ∆VAi

m

−GΛi

m − BA ∆VAi

m − BB ∆VBi

m

(5.67)

This results in a simplified expression for (5.44) similar to the linear coupling method:

∆Λi
j = Si

j +

(
j

m

)
∆Λi

m (5.68)

where

Si
j =−GΛi

j −
(

j

m

)
RAi

m ∆VAi

m

=CA

[
P A

j −
(

1− j

m

)
P A

0 −
(

j

m

)
P A

m

]
−
[
Λi

j −
(

1− j

m

)
Λ0 −

(
j

m

)
Λi

m

]
−CA

(
1− j

m

)(
MAÜA

0 + RA(U̇A
0 , UA

0) + CAT

Λi
0 − P A

0

)
−CA

(
j

m

)(
MAÜAi

m + RA(U̇Ai

m , UAi

m) + CAT

Λi
m − P A

m

)
−CA

(
j

m

)(
MA ∆V̈ Ai

m + DA ∆V̇ Ai

m + KAi

j ∆V Ai

m

)
(5.69)

139

The third term is identically zero and the last two terms cancel each other because of the

relation (5.47). Thus one can express Λi+1
j as:

Λi+1
j = Λi

j + ∆Λi
j = Λi

j + Si
j +

(
j

m

)
∆Λi

m

= CA

[
P A

j −
(

1− j

m

)
P A

0 −
(

j

m

)
P A

m

]
+

[(
1− j

m

)
Λ0 −

(
j

m

)
Λi+1

m

] (5.70)

If one assumes that the load P A varies linearly with the time step ∆T then the first term in

the expression above and expression (5.69) is zero. In addition, Si
j = 0 because the second

term in (5.69) can be insured to be zero by appropriately choosing the assumed solution at

iteration i for Λi
j.

Note that for a fully consistent non-linear coupling method, if Si
j needs to be transferred

at a cross point between multiple subdomains, then it should be transferred to the subdomain

with the smallest time step.

5.5 Results

As a first step, the current non-linear multi-time-step coupling method was verified by

solving the linear problems presented in [95]. The linear problems needed just one Newton-

Raphson iteration and the results were identical to those of the linear coupling method.

Figure 5.1: A split SDOF problem with non-linear springs.

140

Figure 5.2: Non-linear split SDOF system under step load.

The simplest non-linear coupling problem is a split single degree of freedom (SDOF)

system with non-linear springs as shown in figure 5.1. A number of non-linear elastic and

inelastic springs were considered. Results from a particular system are shown in figures 5.2

and 5.3.

The two subsystem masses used were 1.5 and 0.5. Both masses were excited with step

loads of 12 and 8 respectively. The non-linear function chosen to represent the spring force

for both the springs can be expressed by a composite curve:

(U k ≤ −uy) : Rk(U k) = −k0 sin(uy)

√
−U k

uy

if (−uy ≤ U k ≤ uy) : Rk(U k) = k0 sin(U k)

(U k ≥ uy) : Rk(U k) = k0 sin(uy)

√
U k

uy

where uy <
π

2

(5.71)

141

Figure 5.3: Spring forces and interface reaction for the non-linear split SDOF system under
step load.

The values chosen for the material parameters (k0; uy) were (3; 1) for system A and (7; 1)

for system B. The time steps for systems A and B were chosen as 0.5 and 0.1 respectively.

Figure 5.2 shows the response of the corresponding undecomposed system. The response of

the split system almost exactly matches that of the undecomposed system. The total and

individual spring forces and the interface reactions between A and B are shown in figure 5.3.

A variety of coupling cases such as implicit-explicit, implicit-implicit and explicit-explicit

were considered and the results were found to be identical. These results suggest that the

current method can also be expected to preserve the subsystem energies without dissipation

or instability.

The response of a block of granular pavement material under shear is presented in figure

5.4. The specimen is a cube of size 0.4 m fixed at the bottom and loaded with an asymmetric

shear force applied instantaneously on the top face. A non-linear elastic model presented in

[98] was used to model the resilient elastic behavior of the granular material. The bottom

142

Figure 5.4: A block of pavement material under shear.

two layers are integrated implicitly and the top two layers are integrated explicitly with

the same time step of 2×10−4 seconds. The results show seamless integration between the

subdomains.

Figure 5.5: Response of a notched beam.

Next, a 3-D notched cantilever beam shown in figure 5.5 was considered. The beam was

fixed on the left end and excited with a step axial surface pressure of 200 MPa on the right

end. The dimensions of the beam were 2m × 0.2m × 0.05m. It was discretized with 5955

nodes and 4400 elements and the mesh was refined around the notch to capture the stress

143

Figure 5.6: Horizontal displacement response of the free end of the notched beam.

singularity. The mesh was decomposed as shown in figure 5.5. The darkly shaded region was

integrated explicitly with a time step of 1× 10−6 while the rest of the mesh was integrated

implicitly with a time step 1 × 10−5. The problem was first solved using a linear elastic

material with density ρ = 7.8 × 103 kg/m3, Young’s modulus E = 210 GPa and Poisson’s

ratio ν = 0.33 and then using a non-linear inelastic material model based on ‘J2’ Plasticity

[7] with kinematic and isotropic hardening. The yield stress was chosen to be 260 MPa

and plastic hardening modulus used was H = 21 GPa. The horizontal displacement and

velocity response of the free end of the beam are plotted in figures 5.6 and 5.7. One may

note that the inelastic beam deforms more because of the accumulated plastic strain. The

initial amplitude of the vibration is also damped out by the inelastic beam after which it

continues to oscillate within its modified elastic region. There is no discernible difference

between the results obtained using the current multi-time-step approach and the traditional

uniform time step approach.

144

Figure 5.7: Horizontal velocity response of the free end of the notched beam.

5.6 Conclusion

An extension of the multi-time-step coupling method to non-linear problems has been

presented. This method helps one to partition a large finite element mesh into smaller

subdomains and solve them separately with different time integration schemes and/or time

steps. In addition to being computationally faster than a uniform time-step approach, it is

stable and energy preserving. The iterative PCG approach for solving the interface problem

adds to the efficiency of this method.

The present method offers the greatest benefits when the problem under consideration

is largely linear with possibly small regions exhibiting non-linear response. In such cases,

one should decompose the mesh in such a manner that elements with similar time step

requirements are grouped together. Subdomains that behave linearly should be integrated

implicitly with large time steps and the non-linear subdomains should be integrated explicitly

to maximize efficiency.

145

The present approach can also be extended to multiple subdomains following the recursive

coupling approach presented in [97]. It is found that when there are more than two levels of

time steps, only a recursive coupling approach is feasible and the traditional FETI approach

using global interfaces is not practical.

146

Chapter 6

Recursive Coupling for Multiple
Subdomains

A consistent coupling method for a finite element domain decomposed recursively into

a hierarchy of subdomains is presented. The decomposition is achieved by dividing a given

problem domain successively into two subdomains at a time until a hierarchy of subdomains

is obtained. These subdomains are solved independently and the individual solutions are

coupled together in accordance with the hierarchy to obtain the global solution. This enables

one to integrate each subdomain of the global mesh with an appropriate time-step and/or

time stepping scheme. The present approach is an extension of a method developed for

linear systems with two subdomains (Ref. [95]) to systems with multiple subdomains. The

coupling is achieved through Lagrange multipliers by imposing continuity of velocity across

the interfaces between subdomains. The method exactly preserves the total system energy

and inherits the stability and accuracy characteristics of its component subdomains. It also

exhibits seamless integration between the subdomains with minimal interface computation.

Results from several benchmark problems verify these properties and are used to compare

its performance with respect to other coupling methods.

6.1 Introduction

Over the last decade, domain decomposition methods [96] such as the finite element

tearing and interconnecting (FETI) method [81] have been successfully employed to solve

a wide variety of problems in statics and dynamics. For instance, 2nd order PDEs arising

from 2-D and 3-D continuum elements [89] and 4th order PDEs arising from structural

147

plate and shell elements [86] have been investigated. Traditionally the FETI method is

implemented using an iterative preconditioned conjugate projected gradient (PCPG) method

[81] to compute the Lagrange multipliers on the interface. Variations of the FETI method

have been proposed to effectively handle cross points on the interface. Cross points are

nodes that are shared by three or more subdomains and their presence can lead to a singular

interface problem even though it is still consistently solvable. The basic FETI method

using PCPG incorporates this redundancy for better global convergence of the solution. An

advancement of the basic FETI method, the FETI-DP (dual-primal) method [88] equates

the degrees of freedom (dofs) at the cross points to global dofs as opposed to equating them

to each other. Hence, the resulting interface problem relates the dual Lagrange multipliers

to the primal global dofs. One can then eliminate the primal variables at the cross points

through a coarse problem and solve for the Lagrange multipliers as usual with the regular

PCPG method.

We present a recursive domain decomposition based implementation of the FETI method

that circumvents the problematic cross points. The current method for is formulated for

structural dynamics problems where multiple subdomains are integrated with the same time-

step but with possibly different Newmark schemes. The structural dynamics problem is

chosen so that the individual subdomain problems are non-singular and this choice does not

restrict the applicability of the current method in any way. It can also be applied to problems

in statics using the numerical techniques developed for the conventional FETI method for

floating subdomains. The current method is also a precursor to a more general approach for

solving problems where different subdomains can be integrated with different time-steps.

The recursive domain decomposition approach has not been used as commonly in the

computational mechanics community as in the computer science community. However, some

relevant works which address issues similar to those that arise in the present method are

cited.

Hackbusch [99] presented one of the first approaches using nested multi-level grids for

148

elliptic Eigen-problems. Bennighof, Lehoucq and co-workers [100, 101] have developed an

automated multi-level substructuring methods for Eigen-problems in elastodynamics. Pa-

palukopoulos and Natsiavas [102] have presented a multi-level substructuring method for

non-linear dynamic analysis of very-large scale mechanical systems.

Saad and co-workers [103, 104] have developed algebraic multi-level solvers and precon-

ditioners based on recursive domain-based partitioning for incomplete LU factorization of

sparse matrix systems. Le Borne [105] has studied approximate matrix inversion methods

using a hierarchical decomposition of the global system matrix.

Dubinski [106] presented a parallel tree implementation of an N-body problem using

recursive bisection. Marzouk and Ghoniem [107] have discussed a parallel implementation

of a hierarchical clustering method for studying N-body problems with applications to fluid

dynamics, gravitational astrophysics and molecular dynamics.

Yang and Hsieh [108] have developed an iterative approach for parallel implementation

of non-linear dynamic finite element analysis using direct substructuring. Griebel and Zum-

busch [109] have surveyed current methods in the literature for parallelization, multi-level

iterative solvers and domain decomposition.

6.2 FETI for Dynamics

The semi-discrete equations governing the dynamics of a structural domain Ω decomposed

into S subdomains Ωk, 1 ≤ k ≤ S, are given by:

M kÜ k + KkU k + CkT
Λ = P k ∀k : 1 ≤ k ≤ S (6.1)

S∑
k=1

CkU̇ k = 0 (6.2)

where M k, Kk, U k and P k denote the mass matrix, stiffness matrix, displacement vector

and the load vector respectively. Ck is the boolean connectivity matrix and Λ is the vector

149

of Lagrange multipliers associated with the FETI decomposition. Note that equation (4.21)

represents the constraint of continuity of velocities between the subdomains. These equations

can be integrated in time using the Newmark time stepping schemes. The fully discretized

equations for advancing all the subdomains from time step tn to tn+1 can be expressed in

block matrix form [95] as:

Mk Uk
n+1 + Ck Λn+1 = Pk

n+1 − Nk Uk
n ∀k : 1 ≤ k ≤ S (6.3)

S∑
k=1

BkUk
n+1 = 0 (6.4)

where

Uk
n =

Ü k

n

U̇ k
n

U k
n

 ; Pk
n+1 =

P k

n+1

0

0

 ; Ck =

CkT

0

0

 ; Bk =

[
0 Ck 0

]

Mk =

M k 0 Kk

−γk∆tIk Ik 0

−βk∆t2Ik 0 Ik

 ; Nk =

0 0 0

−∆t(1− γk)Ik −Ik 0

−∆t2(1
2
− βk)Ik −∆tIk −Ik

(6.5)

γk and βk are the Newmark parameters, ∆t = tn+1 − tn is the time step and Ik is the

subdomain identity matrix. Equations (6.3) and (6.4) can be combined and expressed in a

global matrix as:

M1 C1

M2 C2

.

MS CS

B1 B2 · · · BS 0

U1
n+1

U2
n+1

...

US
n+1

Λn+1

=

P1
n+1 − N1 U1

n

P2
n+1 − N2 U2

n

...

PS
n+1 − NS US

n

0

(6.6)

150

The above system can be solved efficiently using the bordered system solution procedure

[95]. One may verify that the solution is given by:

Uk
n+1 = Vk

n+1 + Wk
n+1 (6.7)

where MkVk
n+1 = Pk

n+1 − NkUk
n+1 (6.8)

MkYk = Ck and Wk
n+1 = −YkΛn+1 (6.9)

The interface reactions Λn+1 can be computed from:

H Λn+1 = f (6.10)

where H ≡
S∑

k=1

BkYk =
S∑

k=1

γk∆t Ck
[
M̃ k

]−1

CkT (6.11)

f ≡
S∑

k=1

BkVk
n+1 =

S∑
k=1

CkV̇ k
n+1 (6.12)

and M̃ k ≡M k+βk∆t2Kk is the effective system matrix usually obtained in dynamics. Note

that the computation of Vk
n+1 from equation (6.8) is done separately and independently for

each subdomain by simply advancing the previous solution Uk
n by one time step. Similarly,

Yk matrices can also be computed independently for each subdomain by solving for them

one column at a time against the columns of Ck. Also note that solving against the columns

of Ck simply amounts to applying a unit (positive or negative) load, one at a time, to each

degree of freedom on the interface of Ωk and computing its response for one time step from

‘at rest’ initial conditions. If Ck matrices include redundancies from the cross points, then

the interface matrix H becomes singular, though still consistently solvable with f .

The solution at each time step is obtained through a three step process:

1. Solve all the subdomains independently for Vk
n+1 from (6.8).

2. Solve for the Lagrange multipliers from HΛn+1 = f .

151

3. Update all the subdomains: Uk
n+1 = Vk

n+1 + Wk
n+1 where Wk

n+1 = −YkΛn+1.

FETI, implemented with direct solvers, uses the Yk matrices which depend upon the

subdomain matrices M̃ k. For linear problems, these need to be computed only once initially.

One should also form and factorize the interface matrix H as an initial computation to

increase efficiency of interface solve in step 2. However, for large problems, this interface

problem itself can be quite large, making direct solvers unsuitable.

FETI with the PCPG method, in contrast, solves the interface problem iteratively and

does not need to compute the Yk matrices. Matrix-vector products of the type HΛn+1 are

computed subdomain-wise for better efficiency. The disadvantage in this case is that, in the

presence of cross points, there is a rapid loss of orthogonality between the search vectors of

the PCPG method.

6.3 Recursive Implementation of FETI

In this section we will illustrate a hierarchical implementation of the FETI method and

compare its computational cost with the traditional FETI method implemented using direct

solvers. Given a finite element mesh partitioned into S subdomains, a hierarchy of subdo-

mains can be built by combining two subdomains at a time until the original undecomposed

mesh is recreated. Such a hierarchy can be effectively represented by the tree structure as

shown in figure 6.1. The leaf nodes in the tree represent the subdomains that are not further

subdivided. The original undecomposed structure Ω is called the root node. Let Ω(A,B) be a

subdomain created by coupling two subdomains ΩA and ΩB. In general, A and B can either

be subdomain numbers of leaf nodes or nested pairs of subdomain numbers representing

coupled nodes. The node Ω(A,B) is called the parent node of its left and right daughter nodes

ΩA and ΩB, respectively.

Note that we always couple two subdomains at a time and so the cross points are never

created within a single coupling level. In addition, the size of the interface between any two

152

Figure 6.1: A hierarchy of subdomains.

subdomains is always much smaller compared to the entire interface Γb. This makes the

FETI interface problem (6.10) more suitable for direct solvers.

The computations involved with solving a structure in this hierarchical manner can be

laid out as follows. At any time step, the global problem to be solved is:

M Un+1 = Pn+1 − N Un (6.13)

where all the matrices are associated with the global undecomposed mesh. Since the coupling

described in the previous section preserves the total system energy exactly [95], solution to

any subdomain in the tree can be replaced by the coupled solution of its daughter subdo-

mains. Thus, the global problem (6.13) can be replaced by a multi-level coupled problem

by successively decomposing it into two sub-problems according to the hierarchy shown in

153

figure 6.1. In general, for any node Ω(A,B) in the tree, the problem:

M(A,B) U(A,B)
n+1 = P(A,B)

n+1 − N(A,B) U(A,B)
n (6.14)

is substituted with two coupled sub-problems for ΩA and ΩB:

MA C(A,B)

A

MB C(A,B)
B

B(A,B)
A B(A,B)

B 0

UA
n+1

UB
n+1

Λ
(A,B)
n+1

 =

PA

n+1 − NAUA
n

PB
n+1 − NBUB

n

0

 (6.15)

similar to equation (6.6). Note that the matrices [C(A,B)
A , B(A,B)

A] and [C(A,B)
B , B(A,B)

B] are

interface matrices associated with the subdomains ΩA and ΩB respectively for the interface

Γ
(A,B)
b between them exclusively. The Lagrange multiplier Λ

(A,B)
n+1 is also associated only with

the interface Γ
(A,B)
b . In addition to the hierarchy of subdomains, the procedure described

above also creates a hierarchy of interfaces such that the global interface Γb is the union of

all the individual interfaces between subdomains. The system (6.15) can be solved using the

procedure described in the previous section. One must, however, order the computations

carefully to account for the possibility that each of the subproblems above may be further

subdivided.

Computation of Y Matrices

The solution of Y = M−1C can be carried out subdomain-wise. Further we note that one

does not explicitly need to compute the inverse of the M matrix. The matrix Y can be built

one column at a time by solving it against the columns of C:

MkY(A,B)
k = C(A,B)

k for k = A, B (6.16)

154

⇒

M̃ k Ÿ
(A,B)

k = C
(A,B)T

k

Ẏ
(A,B)

k = γk∆t Ÿ
(A,B)

k

Y
(A,B)

k = βk∆t2 Ÿ
(A,B)

k

for k = A, B (6.17)

Also note that solving against the columns of C
(A,B)T

k simply amounts to applying a unit

load, one at a time, to each dof on the interface Γ
(A,B)
b and computing the response of

subdomain Ωk for a single time step from at rest initial conditions. This can easily be done

with conventional dynamics codes since the subdomain matrices would already be formed

and factorized.

Once the Y matrices have been obtained, the interface matrix H(A,B) can be formed as:

H(A,B) = B Y =

[
B(A,B)

A B(A,B)
A

] Y(A,B)
A

Y(A,B)
B

⇒ H(A,B) = C

(A,B)
A Ẏ

(A,B)
A + C

(A,B)
B Ẏ

(A,B)
B

(6.18)

which is exactly the same result as in (6.11) if only two subdomains ΩA and ΩB are to be

coupled.

Solution and Coupling of Subdomains

The independent responses V = M−1P for both the subdomains can also be computed

subdomain-wise:

MkVk
n+1 = Pk

n+1 − NkUk
n for k = A, B (6.19)

⇒

M̃ k V̈ k
n+1 = P k

n+1 −KkÛ k
n+1

V̇ k
n+1 = ˆ̇V k

n+1 + γk∆t V̈ k
n+1

V k
n+1 = V̂ k

n+1 + βk∆t2 V̈ k
n+1

for k = A, B (6.20)

155

The Lagrange multipliers are then solved from:

H(A,B) Λ
(A,B)
n+1 = B V =

[
B(A,B)

A B(A,B)
A

] VA
n+1

VB
n+1

⇒ H(A,B) Λ

(A,B)
n+1 = {C(A,B)

A V̇ A
n+1 + C

(A,B)
B V̇ B

n+1}

(6.21)

and the subdomain solutions updated using:

Ü k

n+1

U̇ k
n+1

U k
n+1

 =

V̈ k

n+1

V̇ k
n+1

V k
n+1

−

Ÿ
(A,B)

k

Ẏ
(A,B)

k

Y
(A,B)

k

Λ
(A,B)
n+1 for k = A, B (6.22)

Starting from the root node in the tree and moving down through various levels of coupling

in the tree, the solution is advanced through one time step once the entire tree has been

traversed.

6.3.1 Solving a General Subdomain in the Hierarchy

A non-iterative direct solution procedure for the interface problems at various levels of

the tree are considered here. The procedure for solving a general node Ω(A,B) in the tree is

given by the self-recursive subroutine TreeSolve presented in figure 6.2. Ω(A,B), P(A,B) and

U(A,B)
n are inputs and U(A,B)

n+1 is the output.

Remarks

1. The entire tree can be solved with one call: TreeSolve(Ω, P, Un, Un+1) for a given load

P and initial conditions Un.

2. Only the leaf nodes are actually solved for their response to external forces using

conventional dynamics codes and it is these responses that are coupled in a hierarchical

fashion.

156

SUB TreeSolve(Ω(A,B), P(A,B), U(A,B)
n , U(A,B)

n+1)
If Ω(A,B) is a Leaf Node then

Solve Ω(A,B)

Else
Call TreeSolve(ΩA, PA, UA

n , VA
n+1)

Call TreeSolve(ΩB, PB, UB
n , VB

n+1)
Compute Λ

(A,B)
n+1 from H(A,B) Λ

(A,B)
n+1 = f (A,B)

Update UA
n+1 = VA

n+1 − Y(A,B)
A Λ

(A,B)
n+1

Update UB
n+1 = VB

n+1 − Y(A,B)
B Λ

(A,B)
n+1

End if
END SUB TreeSolve

Figure 6.2: Subroutine to solve a general node Ω(A,B) in the tree.

3. The coupling is not computationally expensive since Λ
(A,B)
n+1 is computed by forward-

reduction and back-substitution with a pre-factorized H(A,B) and the update is a simple

matrix-vector multiplication operation.

4. The solutions for any node in the tree can be stored by overwriting the solutions of

its component subdomains. No extra storage is required for storing the response of

subdomains higher in the tree.

6.3.2 Initial Computation of Subdomain Matrices

Initial computation of the Y(A,B)
A and Y(A,B)

B matrices can also be done using a self-

recursive subroutine BuildY presented in figure 6.3. Input to the subroutine is the node

Ω(A,B) and output consists of the matrices Y(A,B)
A and Y(A,B)

B for coupling its two daughter

nodes ΩA and ΩB.

Remarks

1. The initial call to build the Y matrices for all the subdomains is: BuildY(Ω, YΩ
LeftChild(Ω),

YΩ
RightChild(Ω)).

2. Note that the subroutine BuildY makes calls to TreeSolve which in turn needs the Y

157

SUB BuildY(Ω(A,B), Y(A,B)
A , Y(A,B)

B)
Do for K = A, B

If ΩK is NOT a Leaf Node :
Call BuildY(ΩK , YK

LeftChild(K), YK
RightChild(K))

Do for each dof J in Γ
(A,B)
b

If K = A : PK = +1 load on dof J in ΩK

If K = B : PK = −1 load on dof J in ΩK

Call TreeSolve(ΩK , PK , 0, column J of Y(A,B)
K)

End do
End Do

END SUB BuildY

Figure 6.3: Subroutine to build the Y matrices for a general node.

matrices to have already been built. This does not pose a problem because Y matrices

are built starting from the lowest level in the tree proceeding up. The recursive BuildY

subroutine ensures that all the Y matrices below a particular level are available before

calling TreeSolve at that level.

3. The convention adopted for C(A,B)
A and C(A,B)

B matrices is that the former contains only

zeros and positive ones and the latter contains only zeros and negative ones.

4. The Y matrices for the entire tree can be stored subdomain-wise. One needs to allocate

space for these matrices only at the leaf subdomain level. After all the matrices have

been built, every leaf subdomain will contain Y matrices for as many levels of coupling

as its depth in the tree.

5. The H(A,B) matrix at any coupling level can be computed as H(A,B) = C
(A,B)
A Ẏ

(A,B)
A +

C
(A,B)
B Ẏ

(A,B)
B .

The final algorithm for solving a linear dynamics problem is summarized in figure 6.4.

Note that the initial acceleration calculation is also coupled between subdomains. Thus, it

has to be carried out either on the original undecomposed mesh or on the decomposed mesh

by imposing continuity of initial accelerations.

158

1. Compute initial acceleration on the global mesh.

2. Construct the hierarchy of subdomains and build their interface matrices.

3. Form the individual subdomain system matrices.

4. Build the Y matrices for all subdomains.

5. Form and factorize the H matrices for each coupling level.

6. Do for n = 1 to number of time steps

(a) Call TreeSolve(Ω, P, Un, Un+1).

(b) Output results.

End do

7. Finish

Figure 6.4: Algorithm for the hierarchical FETI implementation.

6.4 Comparison of Computational Cost

We will consider the six-subdomain example presented in figure 6.1 for the present com-

parison. Note that the global interface Γb is a union of all the interfaces at each coupling

level. The interfaces and their sizes are summarized as follows:

Coupling Level Interface Names Interface size

0 - n0 = 0

1 Γ
(2,3)
b & Γ

(4,5)
b n1 = 1 + 1

2 Γ
((2,3),(4,5))
b n2 = 3n

3 Γ
(1,((2,3),(4,5)))
b n3 = 2n

4 Γ
((1,((2,3),(4,5))),6)
b n4 = 2n

It has been assumed that the subdomains are almost equal in size and that the interface size

between two adjacent subdomains is n. The total interface size is 7n which is the same as

that for the conventional FETI method. In order to compare computational costs, one may

159

note that the present hierarchical implementation differs with the conventional approach on

precisely two counts: (a) the multi-level interface solves and (b) the generation of multi-level

Y matrices.

The cost of an interface solve at each time step for the conventional FETI method

implemented using direct solvers is ∝ (7n)2 : which is the cost of forward-reduction and

back-substitution on the entire interface problem. The total cost of building all the Y

matrices is the same as the cost for solving all the subdomains once for each degree of

freedom on the interface: 2× 7n subdomain solves.

For the hierarchical implementation, the interfaces are divided between different coupling

levels. In this case, the cost of an interface solve is the sum of the costs for all the individual

interfaces: ∝ (n4)
2 +(n3)

2 +(n2)
2 +(n1)

2. The cost of computing the Y matrix for particular

subdomain in the tree is equal to the cost of solving its corresponding subtree once for each

dof on the interface at the coupling level in question. For instance, in the present case, the

total cost of computing Y matrices at all coupling levels, in addition to the 2×7n subdomain

solves, is:

• Level 4 : ∝ [(n3)
2 + (n2)

2 + (n1)
2] + 5 subdomain updates

• Level 3 : ∝ [(n2)
2 + (n1)

2] + 4 subdomain updates

• Level 2 : ∝ [(n1)
2] + 4 subdomain updates

• Level 1 : ∝ [(n0)
2] = 0

The costs in the square brackets are for solving interface problems lower in the hierarchy

and the subdomain updates are simple matrix-vector multiplications of the form −YΛ.

The above discussion shows that although the initial computational cost of Y matrices is

slightly greater for the hierarchical method than that for the conventional approach, the per

time step cost of interface solves is smaller because (n4)
2 +(n3)

2 +(n2)
2 +(n1)

2 ≤ (7n)2 since

n4 + n3 + n2 + n1 = 7n. This would translate into a big advantage for long time dynamic

simulations where the problem needs to be run for a large number of time steps.

160

6.5 Effect of Tree Topology

The computational costs associated with this approach may actually depend upon the

hierarchy of decomposition of the global structure i.e. topology of the tree. We will consider

a simple square domain shown in figure 6.5 for comparing computational costs of the Hier-

archical FETI method with the traditional PCG method. The domain is decomposed into

n× n = n2 subdomains of equal sizes and each subdomain side contains l nodes. The total

interface contains (n− 1)nl nodes and each subdomain contains l2 nodes. Let N ≡ n2 and

L ≡ l2.

Figure 6.5: An example problem domain.

Case (i) Full Tree

The subdomains are coupled as shown in figure 6.6 where the thickness of the interface

lines represents their coupling sequence. The thinnest interfaces are coupled first and the

thickest interfaces are coupled last. The associated tree is fully populated and has the

minimum number of levels possible. The total number of levels in the tree is D where

D = log2N and N = 2D.

161

Figure 6.6: Full tree.

Case (ii) Sparse Tree

The subdomains are coupled by adding them successively one at a time to a growing

subdomain as shown in figure 6.7. The associated tree is minimally populated and has the

maximum number of levels possible. In this case we shall assume that the size of the interface

is 2l at every level of coupling. The total depth D of the tree is n2 − 1 = N − 1.

Figure 6.7: Sparse tree.

Depending upon the actual discretization within each subdomain, certain tree topology

may be more suitable than others. Finding the optimal tree topology for a given problem is

quite a challenging problem.

162

6.6 Multiple Subdomains with Multiple Time-steps

The conventional FETI implementation for multiple subdomains with a uniform time

step uses a single global interface between all the subdomains and couples them all at once

using the PCPG approach. The GC method uses a similar global interface approach for

coupling multiple subdomains even for multiple time steps.

In the present case, it turns out, that this global interface coupling is feasible only for

multiple subdomains using the same time step. When more than two subdomains using

two or more time steps are coupled, the global interface problem involves the simultaneous

solution of all the different time step levels which is computationally impractical. Consider

the simplest case with three-way split SDOF problem with subdomains A, B and C. Let

subdomain A be integrated with time step ∆T and subdomains B and C integrated with ∆t

where ∆T = 2∆t. Subdomain equations for advancing the state of the system by ∆T are:

MAUA
n+2 + NAUA

n + CAΛn+2 = PA
n+2

UA
n+1 =

1

2

(
UA

n + UA
n+2

)
MBUB

n+1 + NBUB
n + CBΛn+1 = PB

n+1

MBUB
n+2 + NBUB

n+1 + CBΛn+2 = PB
n+2

MCUC
n+1 + NCUC

n + CCΛn+1 = PC
n+1

MCUC
n+2 + NCUC

n+1 + CCΛn+2 = PC
n+2

(6.23)

Interface equations for conventional FETI with dofs Λ = (ΛAB, ΛBC , ΛCA) are:

ΛBC
n+1 : CBBCU̇B

n+1 + CCBCU̇C
n+1 = 0

ΛAB
n+1 : CAAB(MAÜA

n+1 + KAUA
n+1 + CAT

Λn+1 − P A
n+1) = 0

ΛCA
n+1 : CACA(MAÜA

n+1 + KAUA
n+1 + CAT

Λn+1 − P A
n+1) = 0

Λn+2 : BAUA
n+2 + BBUB

n+2 + BCUC
n+2 = 0

(6.24)

163

Note that the equations for both time steps tn+1 and tn+2 are singular because of the presence

of redundant interface dofs. However, they are still solvable.

Alternatively, for the algebraically partitioned interface with dofs ΛA, ΛB, ΛC and in-

terface velocity U̇ I , the equations are:

ΛA
n+1 : CA(MAÜA

n+1 + KAUA
n+1 + CAT

ΛA
n+1 − P A

n+1) = 0

ΛB
n+1 : CBU̇B

n+1 = BBU̇ I
n+1

ΛC
n+1 : CCU̇C

n+1 = BCU̇ I
n+1

U I
n+1 : BAT

ΛA
n+1 + BBT

ΛB
n+1 + BCT

ΛC
n+1 = 0

ΛA
n+2 : CAU̇B

n+2 = BAU̇ I
n+2

ΛB
n+2 : CBU̇B

n+2 = BBU̇ I
n+2

ΛC
n+2 : CCU̇C

n+2 = BCU̇ I
n+2

U I
n+2 : BAT

ΛA
n+2 + BBT

ΛB
n+2 + BCT

ΛC
n+2 = 0

(6.25)

which are non-singular.

In either case, the interface equations are coupled across both the time steps and cannot

be solved in a time stepping manner tn+1 followed by tn+2 using a global interface between

the three subdomains A, B and C. Through some algebra, trying to decouple the two time

steps, it turns out that if one couples two subdomains and treats them as a single new

subdomain then one can solve the interface equations in a time stepping manner recursively.

The idea of recursive, hierarchical domain decomposition naturally generalizes to cases

with multiple time steps where different nodes in the tree structure can now be integrated

with different time steps. However, if a particular node in the tree has more than two

daughter nodes, then all the daughter nodes must all have the same time step. This allows

one to couple multiple levels of time steps by coupling two subdomains at a time in a recursive

manner.

164

6.7 Results

We first consider a split single degree of freedom (SDOF) problem where a mass and

spring system excited with a step load is split into 4 subdomains (with masses = (2, 1,

4, 3); spring stiffnesses = (3, 2, 3, 1) ; step loads = (1, 3, 2, 2)) and integrated with

the same time step of 0.75 but with different combinations of Newmark schemes. The

Figure 6.8: Split SDOF response.

velocity response of the system depicted in figure 6.8 shows a good agreement between the

coupled solutions and the exact solution. Note that, when all the four subdomains are

integrated with the same scheme (explicit/implicit), they exactly reproduce the response of

a single undecomposed system integrated with that scheme. The same period shortening and

elongation is observed for explicit and implicit integration respectively. When 2 subdomains

are integrated explicitly and 2 implicitly, these effects tend to cancel out and produce an

average response.

An example of a 3D cantilever beam with a rectangular cross-section, decomposed into

165

Figure 6.9: Decomposition of a 3D beam.

4 irregular subdomains is considered in figure 6.9. The beam is fixed on the left end and

excited with a step load in the axial direction at the free end. All the subdomains are

integrated explicitly with the same time step, just below the Courant stability limit. The

response consists of a stress wave bouncing back and forth through the length of the beam

and matches exactly with the response of the corresponding undecomposed system. This

decomposition is chosen only to verify that the coupling is seamless and is not ideal for

practical computations since it creates large interfaces.

The response of a fan excited with impact loads of varying duration applied on the tips

of its blades is shown in figure 6.10. The problem was decomposed into 6 subdomains, one

for each blade as shown in figure 6.11. An implicit time step 10 times the Courant stability

limit of the corresponding explicit scheme was used for all the 6 subdomains. The results

were found to be identical for the decomposed and the undecomposed fan.

Figure 6.10: Response of fan blades to impact loading.

166

Figure 6.11: Domain decomposition of a fan with 6 blades.

Figure 6.12 shows a notched beam decomposed into 3 subdomains as shown. The cen-

ter subdomain containing the notch has a very fine mesh while the two end subdomains

are relatively coarse. The two end subdomains are integrated implicitly while the center

subdomain is integrated explicitly with time step ratio 10:1 between them. There was no

discernible difference between its response and that of an undecomposed system integrated

explicitly with the smaller time step. The computational times for the two cases were also

comparable. This example shows that one can integrate different subdomains with multiple

time-steps and preserve the accuracy of the solution within each subdomain.

Figure 6.12: Response of a notched beam.

167

6.8 Parallel Implementation

In order to avail all the benefits of domain decomposition in structural dynamics, it is

important to develop an efficient approach for parallel implementation of the recursive multi-

time-step method. A simple loop-level parallelization can be implemented rather quickly by

computing all the tasks of the multi-time-step in serial as before but using multiple processors

within each task such as the subdomain and interface solves. This approach was found to

stagnate in terms of performance beyond 4 processors and is not very attractive.

Figure 6.13: Parallel implementation with 9 subdomains on 4 processors.

A complete parallelization of all the tasks associated with recursive multi-time-step

method can be implemented by considering the topology of the tree to be coupled. Let

the number of processors available be p and the total number subdomains (leaf nodes) in the

tree be S. It is assumed that mesh can always be decomposed in such a way that S ≥ p so

that each leaf node can be assigned a unique processor. All the data associated with a par-

ticular subdomain is stored only on the processor it is assigned. Now starting at the lowest

level in the tree, one can move up the tree by associating each parent node in the tree with

all the processors of its daughter nodes. The interface data associated with coupling two or

more daughter subdomains is common to all processors associated with the parent and is

168

stored on all of them. In this way, each processor has knowledge of the entire tree structure

but stores only the subdomain and interface data that is relevant to itself. Similarly every

node in the tree has associated with itself some subset of the available processors.

An efficient parallel implementation of the present method is being developed to bench-

mark its performance with respect to conventional methods in the literature. Synchroniza-

tion of tasks and correct communication ordering between processors and subdomains is a

challenging problem in this parallel tree coding approach. The current parallelization strat-

egy is to have all the processors run the same recursive code and traverse the full tree in

order to achieve coupling. Each processor traverses down the levels in the tree and at every

tree node it checks whether it is involved at that particular node or not. If it is involved,

then it traverses down further that path, else returns to the parent tree node and explores

other branches as shown in Figure 6.14.

SUB RecursiveSolve(Ω(A,B))
if (myid) ∈ PROCSET(Ω(A,B)) then

if Ω(A,B) is a Leaf Node then
Solve Ω(A,B)

else
Call RecursiveSolve(ΩA, PA, UA

n , VA
n+1)

Call RecursiveSolve(ΩB, PB, UB
n , VB

n+1)
Couple ΩA and ΩB ⇒ SYNCHRONIZE with PROCSET(Ω(A,B))

end if
end if

END SUB RecursiveSolve

Figure 6.14: Parallelization of recursive subroutines.

The variable myid denotes the processor identifier and PROCSET(Ω(A,B)) is the set of

all processors associated with the tree node Ω(A,B). This implementation avoids deadlock

between processors. Note that if a certain processor is not in PROCSET(Ω(A,B)) then it

does not traverse any daughter nodes of Ω(A,B) further down in the tree which helps in load

balancing if one chooses the tree and processor topology carefully.

169

6.9 Conclusion

A method for coupling multiple subdomains in a hierarchical manner is presented. The

method is shown to be more economical in terms of computational cost for long time dynamic

simulations with respect to the conventional FETI method implemented with direct solvers.

An iterative implementation of the same is comparable to the PCPG implementation of

FETI and FETI-DP methods.

It was found that the present method is more suitable for problems where one can identify

subdomains with small interfaces between them. It was shown that the coupling is seamless

and preserves the total system energy exactly. This approach achieves the greatest efficiency

when used in conjunction with multiple time-steps. Problems which are largely linear and

have small zones of non-linear behavior are also good candidates for the present method

since the non-linearity can be isolated locally within a subdomain rather than iterating for

convergence over the entire mesh.

A parallel implementation of the present hierarchical method for non-linear problems

with multiple levels of time steps is in progress. The present code is capable of analyzing

linear problems using recursive domain decomposition for the same time step across all

subdomains. Parallelization of the non-linear multi-time-step coupling method is yet to be

verified.

Among other issues that will arise when using this approach is the choice of subdomains.

One may develop strategies for adaptive subdivision of the global mesh into subdomains as

the mesh is refined. This can complement adaptive mesh refinement strategies being used

currently.

170

Chapter 7

Conclusions and Future Directions

The present multi-time-step coupling method provides an efficient way for solving large-

scale problems in structural dynamics. It is the only method in the literature that allows

domain decomposition with multiple time steps and time stepping schemes and perfectly

preserves the computational characteristics such as stability, accuracy and total energy of

individual subdomains and of the global problem.

The present method uses dual Schur domain decompostion method to divide the mesh

into two or more subdomains coupled to each other with Lagrange multipliers. These La-

grange multipliers ensure the continuity of the coupled solution across the interfaces be-

tween the subdomains. The method is implemented in three steps: solve the subdomains

independently, solve for the Lagrange multipliers on the interface and update the individual

subdomains. For multiple time step problems, the computation of Lagrange multipliers is

required only at the large time step and this makes it possible for one to efficiently couple

subdomains with very large time step ratios between them. A stability analysis for linear

problems shows that the present method exactly preserves the total energy of the system

which is crucial in ensuring that the coupling is stable and accurate. It is observed that as

long as the stability requirements for the time steps are met within individual subdomains,

the coupling itself is unconditionally stable.

The multi-time-step method is also extended to incorporate non-linear structural behav-

ior. This is achieved by linearizing the system equations and then using the linear coupling

method incrementally. For large non-linear problems, a preconditioned conjugate gradient

(PCG) approach is used to compute the Lagrange multipliers on the interface. The present

171

method is most efficient for problems with localized non-linearities as the non-linear behavior

can be restricted to a small subdomain and the rest of the mesh can be treated linearly.

The PCG approach for solving the Lagrange multipliers on the interface becomes ex-

pensive when more than two subdomains share the same interface. A recursive coupling

method which successively couples two subdomains at a time until the original structure is

recovered circumvents this problem. It is found that this approach is not only beneficial for

the traditional FETI implementation but is also the only feasible method for coupling three

or more subdomains with different time steps.

A parallel implementation of the present method using the message passing interface

(MPI) is also presented. Different subdomains are assigned to different processors and the

same recursive code is run on all processors to avoid deadlock. MPI is used to communicate

data between processors for computing the Lagrange multipliers on the interface.

7.1 Future Directions

Innovative ideas are continually being developed in domain decomposition and cou-

pling methods for large-scale problems. Application of the present multi-time-step coupling

method to other time integrators such as the generalized-α method is being explored. An-

other enhancement of the current method is to allow non-matching mesh interfaces between

subdomains. A variety of methods such as the mortar method are already available in the

literature for the same.

Large-scale problems usually have physical phenomena that span multiple orders of mag-

nitude in space and time. In such cases it is more efficient to have multiple levels of time-steps

that serve as a gradation for coupling the various time scales of the problem. For instance,

if one is studying dynamic crack propagation in a large structure using a multi-scale model

based perhaps on atomistic calculations at the crack tip, then one may choose subdomains

that form multiple concentric zones of elements around the crack tip and use varying levels

172

of time steps for each of them.

Time integration of other physical systems such as first order transient heat conduction

with multiple time steps using similar concepts is also being considered. Perhaps a more

general extension of this idea could lead to the development of a multi-scale method in time

or in space-time. Application areas for problems that involve mutliple scales in space and

time such as fluid-structure interaction problems, contact, fracture, multi-body problems,

multi-field coupled problems, quantum-continuum coupling to extract bulk properties from

atomic or nanoscale computations would benefit immensely from such a multi-scale method

in time.

173

References

[1] P. Chadwick. Continuum Mechanics, Concise Theory and Problems. Dover Publica-
tions, 1976.

[2] K. D. Hjelmstad. Fundamentals of Structural Mechanics. Springer, 2005.

[3] J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis.
Cambridge University Press, Cambridge, UK, 1997.

[4] J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. Dover
Publications Inc., New York, 1994.

[5] C. Truesdell and W. Noll. The Non-Linear Field Theories of Mechanics. Springer,
2004.

[6] M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, 1981.

[7] J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, Berlin, 1998.

[8] P. Haupt. Continuum Mechanics and Theory of Materials. Springer, 2000.

[9] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer, 1994.

[10] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry. Springer,
2002.

[11] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Dover Publications Inc., Mineola, New York, 2000.

[12] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. Volume 1, The Basis.
Butterworth-Heinemann, Oxford, UK, fifth edition, 2000.

[13] N. M. Newmark. A method of computation for structural dynamics. Journal of
Engineering Mechanics, ASCE, 85:67–94, 1959.

[14] M. T. Heath. Scientific Computing, An Introductory Survey. WCB/McGraw-Hill,
1997.

[15] Klaus-Jürgen Bathe. Finite Element Procedures. Prentice Hall, New Jersey, 1996.

174

[16] J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method. Journal of Applied
Mechanics, ASME, 60:371–375, 1993. Transactions of the ASME.

[17] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation
for time integration algorithms in structural dynamics. Earthquake Engineering &
Structural Dynamics, 5:283–292, 1977.

[18] W.L. Wood, M. Bossak, and O.C. Zienkiewicz. An alpha modification of newmark’s
method. International Journal for Numerical Methods in Engineering, 15:1562–1566,
1981.

[19] J. C. Simo and K. K. Wong. Unconditionally stable algorithms for rigid body dynamics
that exactly preserve energy and momentum. International Journal for Numerical
Methods in Engineering, 31:19–52, 1991.

[20] J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving algo-
rithms and symplectic schemes for non-linear dynamics. Computer Methods in Applied
Mechanics and Engineering, 100:63–116, 1992.

[21] O. Gonzales and J. C. Simo. On the stability of symplectic and energy-momentum
algorithms for non-linear hamiltonian sytems with symmetry. Computer Methods in
Applied Mechanics and Engineering, 134:197–222, 1996.

[22] F. Armero and I. Romero. On the formulation of high-frequency dissipative time-
stepping algorithms for non-linear dynamics. Part I: low-order methods for model
problems and nonlinear elastodynamics. Computer Methods in Applied Mechanics and
Engineering, 190:2603–2649, 2001.

[23] F. Armero and I. Romero. On the formulation of high-frequency dissipative time-
stepping algorithms for nonlinear dynamics. Part II: second-order methods. Computer
Methods in Applied Mechanics and Engineering, 190:6783–6824, 2001.

[24] A. P. Veselov. Integrable discrete-time systems and difference operators. Functional
Analysis and Its Applications, 22:83–93, 1988.

[25] J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta
Numerica, 10:357–514, 2001.

[26] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure
Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag, New York,
NY, second edition, 2006.

[27] C. Kane, J. E. Marsden, M. Ortiz, and M. West. Variational integrators and the
newmark algorithm for conservative and dissipative mechanical systems. International
Journal for Numerical Methods in Engineering, 49:1295–1325, 2000.

[28] A. Lew, J. E. Marsden, M. Ortiz, and M. West. Variational time integrators. Inter-
national Journal for Numerical Methods in Engineering, 60:153–212, 2004.

175

[29] C. Johnson, U. Nävert, and J. Pitkäranta. Finite element methods for linear hyperbolic
problems. Computer Methods in Applied Mechanics and Engineering, 45:285–312,
1984.

[30] T. J. R. Hughes and G. M. Hulbert. Space-time finite element methods for elasto-
dynamics: formulation and error estimates. Computer Methods in Applied Mechanics
and Engineering, 66:339–363, 1987.

[31] G. M. Hulbert and T. J. R. Hughes. Space-time finite element methods for second-
order hyperbolic equations. Computer Methods in Applied Mechanics and Engineering,
84:327–348, 1990.

[32] X. D. Li and N. E. Wiberg. Structural dynamic analysis by a time-discontinuous
galerkin finite element method. International Journal for Numerical Methods in En-
gineering, 39:2131–2152, 1996.

[33] M. Mancuso and F. Ubertini. An efficient time discontinuous galerkin procedure for
non-linear structural dynamics. Computer Methods in Applied Mechanics and Engi-
neering, 195(44-47):6391–6406, 2006.

[34] R. Abedi, B. Petracovici, and R.B. Haber. A space-time discontinuous galerkin method
for linearized elastodynamics with element-wise momentum balance. Computer Meth-
ods in Applied Mechanics and Engineering, 195:3247–3273, 2006.

[35] P. Betsch and P. Steinmann. Conservation properties of a time FE method - Part
II: Time-stepping schemes for non-linear elastodynamics. International Journal for
Numerical Methods in Engineering, 50:1931–1955, 2001.

[36] X. Zhou and K. K. Tamma. Algorithms by design with illustrations to solid and
structural mechanics/dynamics. International Journal for Numerical Methods in En-
gineering, 66(11):1738–1790, 2006.

[37] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and Theory.
Springer, 2005.

[38] Y. Fragakis and M. Papadrakakis. The mosaic of high performance domain decom-
position methods for structural mechanics: Formulation, interrelation and numerical
efficiency of primal and dual methods. Computer Methods in Applied Mechanics and
Engineering, 192:3799–3830, 2003.

[39] Domain Decomposition Methods in Science and Engineering, Proceedings of the Seven-
teenth Domain Decomposition meeting in St. Wolfgang-Strobl, Austria, Lecture Notes
in Computational Science and Engineering. Springer-Verlag, 2006.

[40] P.L. Lions. On schwarz alternating method. I. In Proceedings of The First Interna-
tional Symposium on Domain Decomposition methods for Partial Differential Equa-
tions, Paris, France, pages 1–42. SIAM, Philadelphia, 1987.

176

[41] R. H. Dodds Jr. and L.A. Lopez. Substructuring in linear and nonlinear analysis.
International Journal for Numerical Methods in Engineering, 15:583–597, 1980.

[42] F.-X. Roux. Domain decomposition methods for static problems. Recherche Aerospa-
tiale, 1:37–48, 1990.

[43] Jan Mandel. Balancing domain decomposition. Communications in Numerical Methods
in Engineering, 9:233–241, 1993.

[44] T. Belytschko and R. Mullen. Mesh partitions of explicit-implicit time integration.
In US-Germany Symposium on Formulations and Computational Algorithms in Finite
Element Analysis, pages 673–690, MIT, Cambridge, MA, 1976.

[45] T. J. R. Hughes and W.K. Liu. Implicit-explicit finite elements in transient analysis:
Stability theory. Journal of Applied Mechanics, ASME, 45:371–374, 1978. Transactions
of the ASME.

[46] T. J. R. Hughes and W.K. Liu. Implicit-explicit finite elements in transient analy-
sis: Implementation and numerical examples. Journal of Applied Mechanics, ASME,
45:375–378, 1978. Transactions of the ASME.

[47] T. J. R. Hughes, K. S. Pister, and R. L. Taylor. Implicit-explicit finite elements in non-
linear transient analysis. Computer Methods in Applied Mechanics and Engineering,
17/18:159–182, 1979.

[48] T. J. R. Hughes and R. A. Stephenson. Convergence of implicit-explicit algorithms in
nonlinear transient analysis. International Journal of Engineering Science, 19:295–302,
1981.

[49] I. Miranda, R. M. Ferencz, and T. J. R. Hughes. An improved implicit-explicit time
integration method for structural dynamics. Earthquake Engineering & Structural
Dynamics, 18:643–653, 1989.

[50] T. Belytschko and Y. Y. Lu. Stability analysis of elemental explicit-implicit partitions
by fourier methods. Computer Methods in Applied Mechanics and Engineering, 95:87–
96, 1992.

[51] W. K. Liu and T. Belytschko. Mixed-time implicit-explicit finite elements for transient
analysis. Computers and Structures, 15:445–450, 1982.

[52] T. Belytschko and R. Mullen. Stability of explicit-implicit mesh partitions in time
integration. International Journal for Numerical Methods in Engineering, 12:1575–
1586, 1978.

[53] T. Belytschko, H.-J. Yen, and R. Mullen. Mixed methods for time integration. Com-
puter Methods in Applied Mechanics and Engineering, 17/18:259–275, 1979.

177

[54] K. C. Park. Partitioned transient analysis procedures for coupled-field problems: Sta-
bility analysis. Journal of Applied Mechanics, ASME, 47:370–376, 1980. Transactions
of the ASME.

[55] K. C. Park and C. A. Felippa. Partitioned transient analysis procedures for coupled-
field problems: Accuracy analysis. Journal of Applied Mechanics, ASME, 47:919–926,
1980. Transactions of the ASME.

[56] T. Belytschko, W. K. Liu, and P. Smolinski. Multi-stepping implicit-explicit procedures
in transient analysis. In Proceedings of the International Conference on Innovative
Methods for Nonlinear Problems, pages 135–153. Pineridge Press International Ltd.,
Swansea, U.K., 1984.

[57] T. Belytschko and Y. Y. Lu. Explicit multi-time step integration for first and second
order finite element semidiscretizations. Computer Methods in Applied Mechanics and
Engineering, 108:353–383, 1993.

[58] M. O. Neal and T. Belytschko. Explicit-explicit subcycling with non-integer time step
ratios for structural dynamic systems. Computers and Structures, 31:871–880, 1989.

[59] P. Smolinski. An explicit multi-time step integration method for second order equa-
tions. Computer Methods in Applied Mechanics and Engineering, 94:25–34, 1992.

[60] P. Smolinski. Stability analysis of multi-time step explicit integration method. Com-
puter Methods in Applied Mechanics and Engineering, 95:291–300, 1992.

[61] P. Smolinski, S. Sleith, and T. Belytschko. Stability of an explicit multi-time step inte-
gration algorithm for linear structural dynamics equations. Computational Mechanics,
18:236–244, 1996.

[62] P. Smolinski. Subcycling integration with non-integer time steps for structural dynam-
ics problems. Computers and Structures, 59:273–281, 1996.

[63] P. Smolinski and Y.-S. Wu. An implicit multi-time step integration method for struc-
tural dynamics problems. Computational Mechanics, 22:337–343, 1998.

[64] Y. S. Wu and P. Smolinski. A multi-time step integration algorithm for structural
dynamics based on the modified trapezoidal rule. Computer Methods in Applied Me-
chanics and Engineering, 187:641–660, 2000.

[65] W. J. T. Daniel. The subcycled Newmark algorithm. Computational Mechanics,
20:272–281, 1997.

[66] W. J. T. Daniel. A study of the stability of subcycling algorithms in structural dy-
namics. Computer Methods in Applied Mechanics and Engineering, 156:1–13, 1998.

[67] W. J. T. Daniel. Explicit/implicit partitioning and a new explicit form of the gener-
alized alpha method. Communications in Numerical Methods in Engineering, 19:909–
920, 2003.

178

[68] M. Ortiz and B. Nour-Omid. Unconditionally stable concurrent procedures for tran-
sient finite element analysis. Computer Methods in Applied Mechanics and Engineering,
58:151–174, 1986.

[69] M. Ortiz, B. Nour-Omid, and E. D. Sotelino. Accuracy of a class of concurrent al-
gorithms for transient finite element analysis. International Journal for Numerical
Methods in Engineering, 26:379–391, 1988.

[70] M. Ortiz, E. D. Sotelino, and B. Nour-Omid. Efficiency of group implicit concurrent
algorithms for transient finite element analysis. International Journal for Numerical
Methods in Engineering, 28:2761–2776, 1989.

[71] E. D. Sotelino. A concurrent explicit-implicit algorithm in structural dynamics. Com-
puters & Structures, 51:181–190, 1994.

[72] S. Modak and E. D. Sotelino. The iterative group implicit algorithm for parallel
transient finite element analysis. International Journal for Numerical Methods in En-
gineering, 47:869–885, 2000.

[73] Y. Dere and E. D. Sotelino. Modified iterative group-implicit algorithm for the dynamic
analysis of structures. Journal of Structural Engineering, ASCE, 130:1436–1444, 2004.

[74] A. Lew, J. E. Marsden, M. Ortiz, and M. West. Asynchronous variational integrators.
Archive for Rational Mechanics and Analysis, 167:85 – 146, 2003.

[75] K. C. Park and C. A. Felippa. A variational principle for the formulation of parti-
tioned structural systems. International Journal for Numerical Methods in Engineer-
ing, 47:395–418, 2000.

[76] C. A. Felippa et al. Partitioned analysis of coupled mechanical systems. Computer
Methods in Applied Mechanics and Engineering, 190:3247–3270, 2001.

[77] M. A. Puso. A 3d mortar method for solid mechanics. International Journal for
Numerical Methods in Engineering, 59:315–336, 2004.

[78] B. Flemisch, M. A. Puso, and B. I. Wohlmuth. A new dual mortar method for curved
interfaces: 2d elasticity. International Journal for Numerical Methods in Engineering,
63:813–832, 2005.

[79] P. Hansbo, C. Lovadina, I. Perugia, and G. Sangalli. A lagrange multiplier method for
the finite element solution of elliptic interface problems using non-matching meshes.
Numerische Mathematik, 100:91–115, 2005.

[80] C. Farhat and F. X. Roux. A method for finite element tearing and interconnecting
and its parallel solution algorithm. International Journal for Numerical Methods in
Engineering, 32:1205–1227, 1991.

[81] C. Farhat and F. X. Roux. Implicit parallel processing in structural mechanics. Com-
putational Mechanics Advances, 2:1–124, 1994.

179

[82] C. Farhat, J. Mandel, and F. X. Roux. Optimal convergence properties of the FETI
domain decomposition method. Computer Methods in Applied Mechanics and Engi-
neering, 115:365–385, 1994.

[83] C. Farhat, L. Crivelli, and F. X. Roux. Extending substructure based iterative solvers
to multiple load and repeated analyses. Computer Methods in Applied Mechanics and
Engineering, 117:195–209, 1994.

[84] K. C. Park, M. R. Justino Jr., and C. A. Felippa. An algebraically partitioned FETI
method for parallel structural analysis: algorithm description. International Journal
for Numerical Methods in Engineering, 40:2717–2737, 1997.

[85] D. J. Rixen, C. Farhat, R. Tezaur, and J. Mandel. Theoretical comparison of the
FETI and algebraically partitioned FETI methods, and performance comparisons with
a direct sparse solver. International Journal for Numerical Methods in Engineering,
46:501–533, 1999.

[86] C. Farhat and J. Mandel. The two-level FETI method for static and dynamic plate
problems Part I: An optimal iterative solver for biharmonic systems. Computer Meth-
ods in Applied Mechanics and Engineering, 155:129–151, 1998.

[87] C. Farhat, K. Pierson, and M. Lesoinne. The second generation FETI methods and
their applications to the parallel solution of large-scale linear and geometrically non-
linear structural analysis probelms. Computer Methods in Applied Mechanics and
Engineering, 184:333–374, 2000.

[88] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a dual
primal unified FETI method-part I: A faster alternative to the two-level FETI method.
International Journal for Numerical Methods in Engineering, 50:1523–1544, 2001.

[89] C. Farhat, L. Crivelli, and F. X. Roux. Transient FETI methodology for large-scale
parallel implicit computations in structural mechanics. International Journal for Nu-
merical Methods in Engineering, 37:1945–1975, 1994.

[90] C. Farhat, L. Crivelli, and M. Geradin. Implicit time integration of a class of con-
strained hybrid formulations - Part I: Spectral stability theory. Computer Methods in
Applied Mechanics and Engineering, 125:71–107, 1995.

[91] C. Farhat and M. Chandesris. Time-decomposed parallel time-integrators: theory and
feasibility studies for fluid, structure, and fluid-structure applications. International
Journal for Numerical Methods in Engineering, 58:1397–1434, 2003.

[92] C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello. Time-parallel implicit inte-
grators for the near-real-time prediction of linear structural dynamic responses. Inter-
national Journal for Numerical Methods in Engineering, 67(5):697–724, 2006.

[93] A. Gravouil and A. Combescure. Multi-time-step explicit-implicit method for non-
linear structural dynamics. International Journal for Numerical Methods in Engineer-
ing, 50:199–225, 2001.

180

[94] A. Combescure and A. Gravouil. A numerical scheme to couple subdomains with
different time-steps for predominantly linear transient analysis. Computer Methods in
Applied Mechanics and Engineering, 191:1129–1157, 2002.

[95] A. Prakash and K. D. Hjelmstad. A FETI based multi-time-step coupling method
for newmark schemes in structural dynamics. International Journal for Numerical
Methods in Engineering, 61:2183–2204, 2004.

[96] Y. Fragakis and M. Papadrakakis. The mosaic of high-performance domain decompo-
sition methods for structural mechanics - Part II: Formulation enhancements, multiple
right-hand sides and implicit dynamics. Computer Methods in Applied Mechanics and
Engineering, 193:4611–4662, 2004.

[97] A. Prakash and K. D. Hjelmstad. A multi-time step coupling method for newmark
schemes in structural dynamics. In Proceedings of McMat2005: Joint ASME / ASCE
/ SES Conference on Mechanics and Materials, 2005.

[98] E. Taciroglu and K. D. Hjelmstad. Simple nonlinear model for elastic response of
cohesionless granular materials. Journal of Engineering Mechanics, ASCE, 128:969–
978, 2002.

[99] W. Hackbush. On the computation of approximate eigenvalues and eigenfunctions
of elliptic operators by means of a multigrid method. SIAM Journal on Numerical
Analysis, 16:201–215, 1979.

[100] J. K. Bennighof and R. B. Lehoucq. An automated multilevel substructuring method
for eigenspace computation in linear elastodynamics. SIAM Journal on Scientific
Computing, 25:2084–2106, 2004.

[101] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro. A comparison
of eigensolvers for large-scale 3d modal analysis using amg-preconditioned iterative
methods. International Journal for Numerical Methods in Engineering, 64:204–236,
2005.

[102] C. Papalukopoulos and S. Natsiavas. Dynamics of large scale mechanical models using
multilevel substructuring. Journal of Computational and Nonlinear Dynamics, ASME,
2:40–51, 2007. Transactions of the ASME.

[103] Y. Saad and J. Zhang. BILUTM: A domain-based multilevel block ILUT precondi-
tioner for general sparse matrices. SIAM Journal on Matrix Analysis and Applications,
21:279–299, 1999.

[104] Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic recursive
multilevel solver. Numerical Linear Algebra with Applications, 10:485–509, 2003.

[105] S. Le Borne. Multilevel hierarchical matrices. SIAM Journal on Matrix Analysis and
Applications, 28:871–889, 2006.

181

[106] J. Dubinski. A parallel tree code. New Astronomy, 1:133–147, 1996.

[107] Y. M. Marzouk and A. F. Ghoniem. K-means clustering for optimal partitioning
and dynamic load balancing of parallel hierarchical n-body simulations. Journal of
Computational Physics, 207:493–528, 2006.

[108] Y.-S. Yang and S.-H. Hsieh. Iterative mesh partitioning optimization for parallel
nonlinear dynamic finite element analysis with direct substructuring. Computational
Mechanics, 28:456–468, 2002.

[109] M. Griebel and G. Zumbusch. Parallel adaptive subspace correction schemes with
applications to elasticity. Computer Methods in Applied Mechanics and Engineering,
184:303–332, 2000.

182

Author’s Biography

Arun Prakash was born January 17, 1977 in Ghazipur, Uttar Pradesh, India. He received

his bachelor’s degree (B.Tech.) in Civil Engineering from Indian Institute of Technology

(IIT), Delhi in 1999. He then obtained his master’s degree (M.S.) in Civil Engineering from

University of Illinois at Urbana-Champaign in 2001 following which he has been pursuing

a doctorate in the same department. During his graduate studies, he has been employed

as research assistant by the Center for Simulation of Advanced Rockets (CSAR) under the

guidance of Professor Keith D. Hjelmstad. His research interests fall in the wide area of

computational methods for coupled multi-physics problems.

183

