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Abstract

This paper presents an approach for the restitution of airborne hyperspectral imagery with linear features. The approach

consisted of semi-automatic line extraction and mathematical modelling of the linear features. First, the line was approximately

determined manually and refined using dynamic programming. The extracted lines could then be used as control data with the

ground information of the lines, or as constraints with simple assumption for the ground information of the line. The

experimental results are presented numerically in tables of RMS residuals of check points as well as visually in ortho-rectified

images.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction features and their inherent constraints could contribute
Although linear features are not widely used for

sensor modelling of linear array scanner imagery,

many experiments have proven the usefulness of

linear features in sensor modelling of frame imagery

(Mulawa, 1989; Sayed, 1990; Habib et al., 2000).

For conventional photogrammetry applications,

linear features offer some advantages over control

points in their use as control features. When used in

overlapping imagery, conjugate point correspondence

is not required. Furthermore, without necessarily

knowing their absolute location on the ground, linear
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significantly to a solution by reducing the ground

control requirements (Weerawong, 1995).

Similarly, linear features can be used as control

data for linear scanner imaging systems. Straight lines

in object space may appear wavy in airborne linear

scanner imagery due to changes in the system trajec-

tory. This deformation of the linear features provides

detailed information about the platform trajectory so

that changes in the sensor orientation could be

detected and estimated.

The Hyperspectral Digital Imagery Collection Ex-

periment (HYDICE) sensor is an airborne pushbroom

imaging spectrometer with 210 spectral channels

ranging from 0.4 to 2.5 Am (Table 1). With 210

spectral bands for each pixel location, HYDICE

provides very accurate land cover classifications.



Table 1

HYDICE sensor characteristics

System attribute Specification

Platform ERIM CV-580

Sensor system

operating altitude

2000–7500 m;

6000 m (design point)

Aircraft operating

altitude

Sea level–7500 m

V/H (aircraft limits) 0.0127–0.059 rads/s

Optics Paul Baker foreoptics

Schmidt prism spectrometer

Aperture diameter 27 mm

System f/number 3.0

Swath width 308 pixels

Swath FOV 8.94j
IFOV 0.507 mrad (average)

Array size 320� 210 pixels

Pixel size 40� 40 Am
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However, this data could only be made useful if the

geometric relationship between pixels in the image

and their corresponding locations on the ground were

known.

This paper focuses on the use of straight linear

feature for the geometric corrections of the airborne

pushbroom imagery. Linear features could be

extracted using automated tools in image space

and could provide the detailed information to correct

the distortions in the raw imagery (Bethel et al.,

2000).
Fig. 1. Collinearity condition.
2. Sensor and platform model

2.1. Sensor model

Fig. 1 shows the geometric relationship between

the ground point and image point of HYDICE imag-

ery for a given scan line. From Fig. 1, the collinearity

equation could be derived easily as in frame photog-

raphy (Mikhail et al., 2001).

Fx ¼ 0þ fl
U

W
¼ 0 ð1Þ

Fy ¼ yþ fl
V

W
¼ 0 ð2Þ
where

U

V

W

2
66664

3
77775 ¼ M

X � XL

Y � YL

Z � ZL

2
66664

3
77775 ð3Þ

M ¼

m11 m12 m13

m21 m22 m23

m31 m32 m33

2
66664

3
77775

y: coordinate of image point in image coordinate

system; X,Y,Z: coordinates of object point in ground

coordinate system; XL,YL,ZL: coordinates of instanta-

neous perspective center in ground coordinate system;

M: 3� 3 orthogonal rotation matrix from ground

coordinate system to image coordinate system; fl:

calibrated focal length of the sensor.

Note that the six Exterior Orientation (EO) param-

eters in Eqs. (1) and (2), consisting of three coordinates

(XL,YL,ZL) of the instantaneous perspective center

position and three independent rotational angles (x,

u, j) implicit inM, have different values for each scan

line. A tremendous amount of control data would be

required in order to recover their values.
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This problem could be addressed by using a

priori information describing the platform trajectory

behavior.

2.2. Platform model

The estimation of sensor position and attitude

parameters in cases of linear scanner imagery is very

closely related to the problem of platform trajectory

estimation.

Even though the HYDICE sensor may encounter

severe air stream turbulence during its flight, the

Flight Stabilization Subsystem (FSS) preserves the

sensor optical axis within 1j of nadir when the aircraft
pitch and roll angles are within 5j of level flight. The

time interval between two adjacent scan lines is very

short (8.3–50 ms) (Mitchell, 1995). Therefore, each

of the six exterior parameters may change slowly as

the line number increases. In addition, each EO

parameter in a given scan line should be highly

correlated to that in a neighboring scan line.

The Gauss–Markov (GM) process describes these

properties well. In this approach, each EO parameter

is regarded as a Gauss–Markov process. The param-

eter for each image scan line is tied or constrained

stochastically to other image lines in close proximity.

Ethridge (1977) and McGlone et al. (1979) investi-

gated the Gauss–Markov model with airborne MSS

data.

Based on the GM process, ‘‘pseudo observation

equations’’ could be written for each EO parameter set

starting with the second line (Lee et al., 2000;

McGlone and Mikhail, 1981), as shown in:

FG ¼ e�sp � DPi�1 � DPi ¼ 0; ð4Þ

where i = line number in the image (i= 2, 3, . . ., n);
sp = coefficient for each EO element; DP is the cor-

rection of any EO parameter (XL,YL,ZL,x,u,j).
Eq. (4) could be considered as fictitious observa-

tions with zero values and could be added to the

conventional observations. In this equation, the cor-

relation of EO parameters in two adjacent lines is

determined by the value of s. If s is close to 0, EO

parameters in the adjacent lines are highly correlated.

Since the time interval between two adjacent scan

lines is very short, s should be close to 0. Various
values were tested to select an optimal value for s.

1e� 5 was chosen and applied to all the EO param-

eters in the experiments.

Note that the GM process was applied to the

corrections of the six EO elements instead of the six

elements themselves.

As the number of observed points corresponding to

control points or linear features increases, the redun-

dant measurements could contribute significantly to

the recovery of EO elements in the vicinity of the

observation. This effect could occur if the weights

assigned to the constraint equations of GM process

were low enough to allow the parameters to vary

significantly from one line to the next.
3. Exploitation of linear features

A lot of work is involved in linear feature extrac-

tion from digital imagery. Although the term ‘linear

feature’ encompasses any continuous feature with a

negligible width and includes such parameterizations

as splines, this experiment is concerned with the

special straight-line case in the object space. The

straight lines suffer worst from roll-induced displace-

ments. They occur mainly in the direction of the flight

line for the airborne linear scanner imaging system.

The lines in the image space can be easily extracted by

a semi-automatic approach and used for sensor mod-

elling with appropriate line models.

3.1. Semi-automated line extraction

Manually digitizing points on the line is a time-

consuming and error-prone work. Fortunately, this

time-consuming work can be replaced by a semi-

automatic method, which extracts lines automatically

that are given an initial approximate delineation

(Gruen and Li, 1995).

The method used in this paper was based on time-

delayed, discrete dynamic programming for energy

minimization of an active contour (Amini et al.,

1990). To start, an initial line was determined approx-

imately. The position of the line was updated by the

influence of image gradients near the edge and by the

internal smoothness of the line. The update continued

until the change in the estimated line position was

insignificant.



Fig. 3. Extracted line.
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An energy minimization model has often been used

to extract linear features (Kass et al., 1988; Mayer et

al., 1997; Klang, 1998). The typical objective function

of such an energy-minimizing model can be expressed

by the equation:

Min: E ¼
Xn
i¼1

½EintðPiÞ þ EedgeðPiÞ	 ð5Þ

where

EintðPiÞ ¼ ðaAPi � Pi�1A2 þ bAPiþ1 � 2Pi

þ Pi�1A2Þ; ð6Þ

Eint( pi) = internal energy; Eedge( pi) = energy function

related to image gradient; pi = position (x,y) of ith

point on the line; a, b = relative positive weights of

each energy term.

This function consists of two energy functions—

internal energy and edge energy. Internal energy

serves as the force that makes the line smooth. The

first term of internal energy is used to make the

consecutive points evenly spaced and to keep them

from grouping on some areas. The second term makes

the shape of the line smooth. Edge energy represents
Fig. 2. Initial points on a line.
the force that makes the line take the shape of the

salient edge features present in the image. Thus, the

line is attracted to image points with high gradient

values. First, one image band was selected by visual

inspection. Then, image gradients were computed

using Roberts operator and linearly stretched ranging

from 0 to 1000 for normalization. The edge energy for

a given line is the sum of gradients of the points on the

line.

Dynamic programming was used to update the

position of the line. In this method, the problem was

divided into a sequence of smaller sub-problems.

These problems could then be solved recursively

one at a time. Therefore, the computational effort

could be reduced significantly.

First, initial points on a line were determined

manually (Fig. 2). For each point, the ‘‘line’’ coordi-

nate was fixed and only the ‘‘column’’ value was

updated. This was because every scan line, through

which a given linear feature passed, had one point of a

linear feature. This was a consequence of unique

circumstances where the linear features were approx-

imately parallel to the column direction. Next, the

initial line was updated within a certain range using

dynamic programming. Fig. 3 shows the resulting

extracted line using this method.



Fig. 4. Coplanarity condition.
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3.2. Linear feature modelling

Linear features can be used either as control data or

as constraint. For the control linear features, ground

information of the linear features is needed. On the

other hand, for constraints, ground information is not

required theoretically.

For the control linear features, two models—the

parametric model and the coplanarity model—were

investigated. Linear features in the object space could

be represented by two end points when they were used

for control data. This representation was useful be-

cause 3D coordinates of two end points could be

easily obtained from surveying data and the conse-

quent observation equations are simple. For the con-

straint lines, only four out of six parameters were

estimated for single image coverage.

3.2.1. Parametric line model

In the parametric form, each coordinate (X,Y,Z)of a

point along a line is expressed in terms of an inde-

pendent parameter, u, associated with the accumulated

length along the line between two end points,

corresponding to u being equal to 0 and 1 for initial

approximations, respectively. Then, Eq. (7) could be

used in the collinearity equations (Eqs. (1) and (2)) for

each point on the line.

X ¼ a0 þ a1u

Y ¼ b0 þ b1u ð7Þ

Z ¼ c0 þ c1u

where 0V uV 1, a0, a1, b0, b1, c0, and c1 are line

descriptors.

Line descriptor parameters (a0, a1, b0, b1, c0, c1)

can be computed from the two end points of the line

using:

½a0 b0 c0	 ¼ ½X1 Y1 Z1	; ð8Þ

½a1 b1 c1	 ¼ ½X2 � X1 Y2 � Y1 Z2 � Z1	; ð9Þ

where (X1, Y1, Z1) = ground coordinates of an end

point on a line; (X2, Y2, Z2) = ground coordinates of

the other end point on a line.

g
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The resulting observation equations were nonlinear,

as are most estimation problems in practice. These

nonlinear equations were linearized and solved using

Newton’s root solving method. Linearization of para-

metric line model can be performed as in conventional

frame applications (Mikhail et al., 2001). For line

parameter u, the partial derivative can be computed

as follows:

B

Bu
½U V W 	T ¼ M ½a1 b1 c1	T ð10Þ

BFxi=Bu ¼ fl

W

BU

Bp
� U

W

BW

Bp

� 	
ð11Þ

BFyi=Bu ¼ fl

W

BV

Bp
� V

W

BW

Bp

� 	
ð12Þ

Similarly, other partial derivatives can be derived

for the six EOs and the focal length.

3.2.2. Coplanarity line model

In this model, the coplanarity condition (Fig. 4) is

used for the mathematical model of linear features

instead of the collinearity condition in the parametric



C. Lee, J.S. Bethel / ISPRS Journal of Photogrammetry & Remote Sensing 58 (2004) 289–300294
model. In Fig. 4, three vectors—a vector (L1) along

the line, a vector (L2) connecting one end point of the

line and perspective center, and image vector (L3)—

should be on the same plane. The coplanarity equation

for control lines can be expressed in the form of a

determinant as follows:

FL ¼ AL1 L2 L3A ¼ 0; ð13Þ

where: L1=[X2-X1 Y2-Y1 Z2-Z1]
T, L2=[XL-X1 YL-Y1

ZL-Z1]
T, L3 =MT[x y-fl]T=[u v w]T.

In the coplanarity approach, each point on a

control line contributes a single observation equation

without the additional line parameter u. Partial de-

rivative for XL can be computed as follows:

B

BXL

ðL1Þ ¼ ½0 0 0	T ð14Þ

B ðL2Þ ¼ ½1 0 0	T ð15Þ

BXL

Fig. 5. Pattern of nonzero elements for the normal mat
B

BXL

ðL3Þ ¼ ½0 0 0	T ð16Þ

B

BXL

ðAL1 L2 L3AÞ ¼ BL1
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Similarly, other partial derivatives can be derived

for six EOs and the focal length.

3.2.3. Constraint line model

When linear features are used as control data, a line

in the object space can be represented by six param-

eters from 3D coordinates of two end points. Howev-

er, it is infeasible to estimate the six parameters of the

line in the object space from image points of the line

for single coverage of pushbroom imagery even

though each scan line is considered as single frame

geometry. Only four out of six variables can be

estimated. Therefore, one coordinate (X or Y) was
rix equation related to the parametric line model.



Fig. 6. HYDICE imagery data set I (Washington, DC).
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fixed from two 3D coordinates (X, Y, Z) of end points

depending on the flight directions of the data sets. If

the flight direction was east–west (X), then Y (south–

north) was fixed to initial value, which is computed

from initial values of parameters. This representation

is simple and similar to the parametric line model.

Even though one of the plane coordinates was fixed,

the Z values for two end points were difficult to

estimate from a single coverage of pushbroom imag-

ery. Consequently, only one coordinate (X or Y) for

each end point of a line in the object space was carried

and free to adjust as unknown parameter. In the

meantime, Z values were carried as unknown param-

eters but constrained to be close to initial values. The

constraint line model can be used as in the parametric

line model.

In addition to six EOs, a focal length, and line

parameter (u), partial derivatives were needed for

coordinates of two end points of lines in object space.

For example, the partial derivative for Y1 (Y coordi-
Fig. 7. HYDICE imagery da
nate of one end point of a constraint line) can be

computed as Eq. (18). Then, the partial derivative for

the observation equation can be obtained from Eqs.

(10) and (11).

B

BY1
½U V W 	T ¼ ð1� uÞ½m12 m22 m32	T ð18Þ

3.3. Implementation

In the proposed models, all the six EO parameters

were carried for each scan line and one focal length

for the whole image lines. The whole equations

could be divided into two groups, namely, observa-

tion equations from point and line features, and

fictitious observation equations from the Gauss–

Markov process.

For the adjustment, the unified approach was used

for all the models. In this approach, all the parameters
ta set II (Fort Hood).



Table 3

Comparison between different line models

Line model Check point RMS (m);

Washington, DC

Check point RMS (m);

Fort Hood

DX DY DX DY

Point only 1.95 1.99 1.61 2.30

Parametric 1.98 1.61 1.49 1.32

Coplanarity 1.98 1.61 1.50 1.32

Constraint 1.93 1.92 1.65 1.26
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were assumed as observations. For unknown param-

eters, each parameter was considered as an observa-

tion with infinitely large variance or equivalently zero

weight. Then it was allowed to change freely in the

adjustment. For the constraint, an observation was

introduced with a very large weight so that it was

unlikely to be changed in the adjustment (Mikhail et

al., 2001).

Unknown parameters could be solved iteratively

with initial approximations. Only one value for each

angle was used for the entire scan lines as initial

approximations, while each scan line had different

values for position parameters. Initial values for the x
and u angles were set to 0. The initial value for j
angle was estimated from the control points. For

position parameters, the initial values were obtained

by linear interpolation from GPS data because GPS

data were not available for each scan line. The

position parameters were introduced with relatively

high weights so that final results were close to the

initial approximations computed from GPS data in the

adjustment.

In this research, all the six EO parameters for

entire scan lines were carried as unknown parame-

ters. Consequently, inversion of a huge matrix was

needed. However, the matrix had a well-defined

structure. Furthermore, by eliminating one set of

variables, the size of the matrix could be reduced.

After solving for remaining parameters, the other

parameters could be solved by back-substitution

(Mikhail et al., 2001).
Table 2

Contribution of control lines

Case no. Point density Check point RMS (m)

Washington, DC Fort Hood

DX DY DX DY

1 Points only 1.95 1.99 1.61 2.30

2 Every 16th point

on lines

1.98 1.66 1.48 1.41

3 Every 8th point

on lines

1.98 1.61 1.48 1.36

4 Every 4th point

on lines

1.98 1.59 1.49 1.32

5 Every 2nd point

on lines

1.98 1.60 1.49 1.31

6 Every point

on lines

1.98 1.61 1.49 1.32
For the parametric line model, the related equations

can be expressed as:

v

vG

vx

2
66664

3
77775þ

B

G

�I

2
66664

3
77775D ¼

f

0

fx

2
66664

3
77775; ð19Þ

where v, vG, vX= residual vectors for observation

(control points and lines), Gauss–Markov process,

parameter equations in unified approach; B =matrix

of partial derivatives for unknown parameters;

G =matrix of coefficients for parameter corrections

in Gauss–Markov process; D = a vector for the

corrections of unknown parameters; f = a vector
Fig. 8. Planimetric RMS errors of check points with various control

point configurations (Washington, DC).



Fig. 9. Planimetric RMS errors of check points with various control

point configurations (Fort Hood).
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for computed image coordinates—observed image

coordinates

�fl
U

W
� x or � fl

V

W
� y

� 	

fX= a vector for updated parameters—initial approx-

imations of parameters. Then, the corresponding

normal equations are

½N þ NG þWxx	D ¼ ½t �Wxx fx	; ð20Þ

where N =BTWB, NG =G
TWGG and t =BTWf.

W,WG,Wxx =weight matrices for observations, fic-

titious observations from Gauss–Markov process, and

parameters in unified approach.

The pattern of nonzero elements for the normal

matrix equation with the parametric line model is

shown in Fig. 5. First, eliminating the line parameters

(u) reduced the normal equations. Then, the reduced
Fig. 10. Ortho-rectified image (po
normal equations had the same pattern of upper-left

part of original normal equations (Fig. 5). In succes-

sion, the six EO parameters were eliminated line by

line until the number of the remaining parameters was

small enough for matrix inversion. Once the remain-

ing parameters were computed with the reduced

normal equations, other parameters could be solved

by back-substitution.
4. Experiments

4.1. HYDICE images

Two HYDICE images were used in this research.

Both images had 320 samples� 1280 lines. The first

data set was collected over the Washington, DC mall

in August 1995. Its ground sample distance was about

3.2 m and the scale was approximately 1:80,000. Its

flight height was about 6320 m. From Fig. 6, the

straight line features, such as roads and building

edges, along the flight direction display a modest

degree of roll-induced ‘‘waviness’’.

The second data set was flown over the urban area

of Fort Hood, TX, in October 1995. Its nominal scale

and ground sample distance were 1:56,000 and 2.2 m,

respectively. Its flight height was about 4430 m. As

can be seen from Fig. 7, straight roads along the in-

track direction were severely ‘‘wavy’’.

In addition to image data, support information was

available for each scan line of HYDICE image. These

support data consist of inertial navigation system

(INS) data, Global Positioning System (GPS) data,

Flight Stabilization Subsystem (FSS) pointing knowl-

edge, and engineering data. Unfortunately, the use of

INS/FSP angular data did not prove helpful when

used as a priori information. Perhaps this was due to
ints only, Washington, DC).



Fig. 11. Ortho-rectified image (points and lines, Washington, DC).
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excessive dynamic effects, timimg offsets, or coordi-

nate system inconsistencies, to name a few possibil-

ities. Other airborne pushbroom systems have

apparently been able to profitably exploit such INS

data to reduce control requirements on the ground

(Bruton et al., 2001).

4.2. Control and check data

To determine the parameters of the sensor model,

both image coordinates and ground coordinates were

needed for control data. The performance was evalu-

ated using separate check data. The ground coordi-

nates were commonly obtained from a conventional

field survey or a GPS survey. In the data sets,

however, the ground coordinates of point data and

the end points of the lines were obtained from

triangulated aerial frame photography.

For the Washington, DC area, a total of 202 points

were extracted from the frame photography on the

digital photogrammetric workstation. The same 101

check points were used in all of the experiments, with

the other 101 control points available for the HYDICE

restitution. Similarly, a total of 232 points were
Fig. 12. Ortho-rectified image
extracted for Fort Hood area. The same 116 check

points were used in all of the experiments, leaving up

to 116 control points available for the HYDICE

restitution.

The extracted straight lines generally fell into two

categories, namely, road boundaries and building

sides. Band 80 was chosen for both data sets because

the linear features of interest had visually the best

contrast in this band. Image gradients were computed

and linearly stretched ranging from 0 to 1000. For the

values of aand b, various values were tested and

a = b = 100 was the most suitable in the test. However,

the results of different sets were similar. For the

Washington, DC area, 50 straight linear features were

extracted from the HYDICE imagery. Similarly, 73

lines were extracted for the Fort Hood area.

4.3. Adjustment results

In order to quantify the performance of each

model, the root mean square (RMS) residuals of check

points were examined. Since only single image cov-

erage was available, the Zcoordinate had to be fixed to

its known value.
(points only, Fort Hood).
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Experiments were run to compare the accuracy

obtained from the restitution of HYDICE imagery

using different control features. First, only control

points were used to determine the unknown parame-

ters. Next, the experiments were repeated with lines in

addition to control points. Two data sets showed

similar results. Adding control line features to the

solution improved DY(cross track) of check points

significantly, while DX(along track) of check points

were essentially the same (Table 2).

The contribution of linear features was examined

with a varying density of points on the control linear

features. First, only control points were used to

determine the unknown parameters. Next, the experi-

ments were repeated as the density of the points on the

control lines was increased and the coplanarity line

model was used for the linear features. Two data sets

showed similar results. Adding straight line features to

the solution improved DY of check points and check

lines significantly, while DX of check points were

essentially the same. In particular, when the image had

severe distortions, the benefit of linear feature was

more significant (Table 2). However, the benefit of

adding additional linear feature points was reduced as

the density of points on the lines increased.

Another experiment was performed to compare the

performance of the three line models. In addition to

control points, linear features with different models

used as control data and the RMS residuals of check

points were computed. The difference between the

parametric model and the coplanarity model was

insignificant for both data sets (Table 3). However,

RMS residuals showed different results for the con-

straint line model. The contribution of the constraint

linear features was insignificant for the Washington,
Fig. 13. Ortho-rectified image (po
DC data set. On the other hand, restitution accuracy

was significantly improved for the Fort Hood data set.

Because the number of control points and control/

constraint linear features was high in the above

experiments, experiments were performed to investi-

gate the relationship between the restitution accuracy

and the number of control points. This was done by

changing the number of control points with a fixed

number of linear features. For both data sets, the same

24 lines were used for different line models, while the

number of control points was changed. Figs. 8 and 9

show the planimetric errors with different control

point configurations and different line models using

the same check points in the previous experiments.

When the number of control points was low, the RMS

residuals were rapidly improved for all four different

cases (control points only and three line models) as

the number of control points was increased. The

contribution of the linear features was more signifi-

cant for the Fort Hood data set as in the previous

experiments.

4.4. Ortho-rectified images

In addition to supporting the effectiveness of the

linear features with tables of numerical results, ortho-

rectified images could also be used to visually com-

pare the results of different control features. First,

ortho-rectification was performed with control points

only. Next, both control points and lines were used to

create ortho-rectified images. Figs. 10 and 11 show

the ortho-rectified images of the Washington, DC area

with different control features. The straightness of the

roads in the ortho-rectified image with linear features

could be noted and compared to the visible wiggles in
ints and lines, Fort Hood).
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the others. For the Fort Hood area, the difference

between the two images could be distinguished more.

The severe wiggles along the flight line still remained

in the ortho-rectified image with control points only

(Fig. 12), while they were almost eliminated in the

ortho-rectified image with linear features (Fig. 13).
5. Conclusions

The ability to accurately recover values for the time-

dependent EO parameters of the sensor was enhanced

by the contribution of linear features. Because of the

flexibility of the Gauss–Markov process as the plat-

form model, the number of observations or the density

of observations with respect to the scan lines contrib-

uted to the performance of the model. The severe

distortions along the flight line were almost eliminated

in the ortho-rectified image with linear features.

The difference between the parametric and copla-

narity line models was insignificant. The basic theo-

ries of these models were essentially the same.

Therefore the corresponding results were similar.

However, the coplanarity model required a smaller

number of parameters. Consequently, its implementa-

tion was simpler than that of the parametric model.

The constraint line model also showed good perfor-

mance when the image had severe distortions.

Because of the lack of information about the INS

angular data, further investigation was not performed

for the use of GPS/INS data in this research. The

integration of INS/GPS data and image measurements

may simplify the sensor and platform modelling and

reduce the control data requirements significantly.

Therefore, it is recommended to investigate INS/

GPS data integrated with image measurements.
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