Datum Definition and Minimél Constraints

In the adjustment of geodetic or photogrammetric networks, one expresses the relationship
between the observations and the point coordinate parameters by condition equations, for example
the angle or the distance condition equations in geodetic applications and the collinearity equation
in photogrammetric applications. These equations all contribute relative information rather that
absolute information about the point positions. The usual procedure to introduce such absolute
information is by constraining, i.e. fixing, certain point coordinate components. These points are
referred to as control points. Without such control pbints, or other constraints, the system of
normal equations would be rank deficient and hence not uniquely solvable. The rank deficiency
is just equal to the minimum number of such constraints which would be needed to bring the
system to full rank. In the case of a horizontal network with only angle observations, the rank
deficiency is four. In the case of a horizontal network which includes at least one distance
observation, the rank deficiency is three. In the case of a photogrammetric network, the rank
deficiency is seven. These rank deficiencies are referred to as the datum defect, since the
presence of the necessary control points would define the datum. Of course, there may be other
causes of rank deficiency such as insufficient observations to define a point. These are another
matter altogether, and are referred to as configuration defects. These should not occur with
careful network planning and they will not be discussed further here.

If one introduces just enough constraint equations to satisfy the datum defect, then these are
known as minimal constraints. Different sets of minimal constraints have the interesting property
that, although the point coordinate estimates may vary, the observation residuals are invariant.
Thus for residual analysis only, any minimal set of control points is as good as another, however
in practice the choice of control points is very important so that the new network would be
consistent with existing networks at shared points. More constraints than the minimal number will
often be used in practice to counteract weak network geometry, or to satisfy particular
requirements to match existing point coordinates. If fewer than the minimal number of constraints
are used, then the system of normal equations remains rank deficient and we say that the point
coordinates are not estimable. Even if the individual point coordinates are not estimable,
functions of them may be, for example angles or distances.

For the purpose of illustration, let us take the geodetic, horizontal triangle network in Figure 1
as an example. If only the three angle observations shown are made and no control points are
introduced, then the resulting normal equations, of size six by six, have rank of two and a rank
deficiency of four. The fixing of two control points, or four point coordinates, would resolve this
datum defect. These constraints can be implemented very simply by elimination, in effect just
replacing the unknowns with numerical constants. However for generality we assume that the
constraints are implemented by the general method of bordering the normal equations as in,
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The constraint matrix corresponding to fixing the first two points would be
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Inner Constraints or Free Net Adjustment

If a square, symmetric matrix, such as N above, is of full rank then all of its eigenvalues are
nonzero, and its eigenvectors form an orthogonal basis for the row space. If it is not of full rank,
say is has order u, rank h, and therefore defect u-h. Such a matrix will have u-h zero eigenvalues.
The h eigenvectors associated with the nonzero eigenvalues will form an orthogonal basis for the
row space, and the u-h eigenvectors associated with the zero eigenvalues will form an orthogonal
basis for the null space. In Figure 2, we see, schematically, the locus of solutions to the rank
deficient equations, the null space, and the intersection point. Because of the favorable geometry,
this intersection point will have both minimum magnitude and minimum variance compared to
other restrictions or constraints. To achieve this solution, we may use the eigenvectors associated
with the zero eigenvalues as coefficients in the constraint equations. This strategy will have the
following characteristics:

(1) it will resolve the rank deficiency from the datum defect and it will therefore permit
a unique solution to the system of equations, and

(2) of all the possible solutions to the rank deficient system, it will select the one with
minimum magnitude and minimum variance.

This solution is known in the geodetic and photogrammetric literature as the inner constraint
solution, or sometimes as the free net solution.

Now, having said all of the above, it can be stated that no one uses this strategy exactly as
presented. This presentation is useful to understand the geometry of the problem but there are
easier ways to construct the needed constraint matrix. The above mentioned eigenvectors provide
a basis of the null space of the rank deficient matrix. But, as with any vector space, there are
many (an infinite number of) such bases. One particular basis can be written directly and is
therefore the one that is most often used. We will describe this one, show that it has the required
properties, and then give a geometric derivation which provides much insight into the meaning
of inner constraints. For the horizontal 2D network in Figure 1, with no distance observations,
the following constraint matrix will have the same effect as the (harder to compute) eigenvectors.
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If distance observations were present then the datum defect would be one less, and the fourth row
of the matrix in Equation 3 would not be needed. For 3D networks, as usually found in
photogrammetry, the datum defect resulting from no control point information is seven. Therefore
one needs seven constraint equations to resolve the defect. Using this approach the required inner
constraint matrix can be written directly, '
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If distance observations were present then the datum defect would be only six, and the last row
in the matrix of Equation 4 could be eliminated. The X,Y,Z terms in Equations 3 and 4 represent
the current values of the approximations of the point coordinate parameters, as the solution
proceeds to iterative convergence.

In order to demonstrate the plausibility of the above statements, it will be shown that the rows
of the matrix in Equation 3 are orthogonal to the coefficients of the angle condition equation.
This condition equation represents the one most widely used in 2D, horizontal triangulation
networks. For the clockwise angle at point i, in Figure 1, from point j to point k, the following
row vector represents the coefficients of the linearized angle condition equation. For reference
see Mikhail, 1980,
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If one takes the inner product of b with the rows of C the result is a vector of zeros. In other
words the rows of C are orthogonal to b.
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where B in the last equation represents the full matrix of condition equation coefficients. Thus
we see that the rows of C are orthogonal to the rows of N, and therefore C can serve as a set
of inner constraints for the matrix N. A similar demonstration can be made with the C of
Equation 4 and the collinearity equations as commonly used in 3D networks in photogrammetry.

The following development is based upon Leick, 1982. It shows the geometrical meaning of
using the inner constraints just described. The development will be summarized for the 2D case
and a simple extension can be made for the 3D case. Consider a similarity transformation (four
parameter) between the adjusted coordinates, X,, and the approximate coordinates, X,

X, =T+ (1+DR,X, 9

in which T is the translation vector, (1+k) is the scale factor, and R is the rotation matrix of a
small angle. Written out,
X
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Assuming a small angle, and near unity scale factor, and assuming that products of small

quantities may be disregarded, we obtain,

sRARNEE RN

Since this represents a step in the iterative solution,
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we can combine the last two equations to obtain,

rearranging,

A
[dx} 10y, x, t,
dy =[0 1 -x, )’J @
_k-

We write these equations for every point in the network,
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The coefficient matrix here, it will be noticed, is identical in form to that of Equation 3. It was
shown previously that this set of equations, considered as constraint equations, will form a basis
for the null space of the datum deficient normal equations, and hence can be used as the inner
constraint matrix. Thus the geometric interpretation of the inner constraint solution is that when
advancing from one iteration to the next, there will be no net shift, rotation, or scale change
between the approximate and the refined coordinate positions. Thus rather than arbitrarily fixing
two points (four coordinate components) out of many, one fixes four geometric relationships. All
points then play equal roles in "connecting" e network to the coordinate system.
e.

This can have dramatic effects upon the a posteriori confidence ellipses of the network points.
If a point is fixed then its confidence ellipse vanishes. For a three point network, after fixing two
points, all of the error is cast into the uncertainty of the third point. With the inner constraint or
free net solution, however, each point has a finite confidence ellipse which reflects its strength
of determination in the network. Furthermore, as was noted earlier, the inner constraint solution
yields a minimum variance solution, and the trace of the variance-covariance matrix (the sum of
the variances) will be a minimum among all constrained solutions. It should be emphasized that
this property is most useful in network analysis and pre-analysis. In actual practice, the network
must eventually be constrained at fixed points, in order to have the best consistency with the
existing control points. The simple three point network shown in Figure 1 is again depicted in
Figures 3 and 4 with confidence or error ellipses derived from two point constraints and inner
constraints respectively. Of course everything which has been described here relating to two-
dimensional networks, has an equivalent and obvious expression in three-dimensional networks,
as found in photogrammetry. The usual three-dimensional inner constraint matrix has been shown
in Equation 4.
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