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MiNIMAL CONSTRAINTS IN TWO-DIMENSIONAL
' ' NETWORKS

By Alfred Leick,' A. M. ASCE

Asstracr:  The use of coordinates in the adjustment of two-dimensional net-
works leads to inherently singular solutions. Various minimal constraints are
applied to eliminate the singularity. The variant and invariant quantities, with
respect 0 a choice of minimal constraints, are identified. Inner constraints,
which constitute a subset of all sets of minimal constraints, are useful in dis-
playing the internal network geometry through error ellipses whose size, shape
and orientation are independent of the definition of the coordinate system.
Inner constraint solutions are helpful in simulation studies where the optimum
station locations and observing program are investigated. Any minimal con-
straint solution can be used for checking the quality of observations and the
detection of biunders.

InTrRODUCTION

The mathematical model for two-dimensional network adjustments uses either
auxiliary parameters (station coordinates) or conditions between the observations.
Since the use of auxiliary parameters leads to a formulation which itself can be
programmed on computers, even on microcomputers, the method of variation
of parameters is rapidly gaining popularity. Any two-dimensional network ad-
justment can be formulated in a unified manner.

The use of coordinates leads to inherently singular adjustments. Various sets
of minimal constraints (conditions) can be applied to solve this singularity. Inner
constraints, which constitute a subset of all sets of minimal constraints, are par-
ticularly useful in displaying the internal network geometry through error ellipses
whose size, shape, and orientation are independent of the definition of the co-
ordinate system.

A general formulation of minimal constraints is given. Sample adjustments
demonstrate the relationship between minimal constraints and the coordinate Sys-
tem definition. Variant and invariant elements with respect to the specific choice
of minimal constraints are identified. Not all sets of minimal constraints are
equivalent from the numerical viewpoint. In the extreme cases, other singularities
of the normal equation arises.
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Minimal constraint solutions are used in checking the quality of the obser-
vations, detection of blunders, etc. Inner constraint solutions are helpful in sim-
ulation studies where the optimum station locations and observing program are
investigated.

DuaL Formutation

There are two methods used to adjust horizontal networks. One method uses
a nonlinear mathematical model in which the observations are related explicitly
to a set of unknown quantities (coordinates) called the parameters. Eq. 1 ex-
presses the general form of this model. The symbols L, and X, = the adjusted
observations and parameters, respectively:

Because the parameters are determined such that some well-defined quadratic
form is minimized, the method is also commonly referred to as the ““method of
variation of parameters.”” The other method, commonly referred to as the
““method of condition equations,’” uses a noalinear model in which the obser-
vations are related implicitly:

The complete formulation of the adjustment also requires information about the
quality of the observations. This information is introduced through the so-called
stochastic model:

P=oi3

in which 3, = the variance-covariance matrix of the observation, Ly; o2 = the
a priori variance of unit weight; and P = the weight matrix.

Both mathematical models are equivalent. They yield the same set of adjusted
observations, L, and variance-covariance matrix of adjusted observations, ;..
Without elaborating any further on the extent of this equivalence, it is simply
stated that a network adjustment can be formulated with either model 1 or 2.

Finding the mathematical model for the method of variation of parameters is
made easy by the following rule: ‘‘Each observation—one equation.”” If there
are n observations (observed distances and angles) in the network then Eq. 1
represents # nonlinear equations, which, in turn, are related to, say, u parameters.
L, is an n-dimensional vector which is related through the n-dimensional func-
tion, F, to the u-dimensional vector of parameters. The difference, n — u, is
called the degree-of-freedom and equals the number of redundant observations,
i.e. there are n — u more equations than needed for the direct solutions of the
system of Eq. 1. Degenerate networks such as the triangle, quadrilateral, central
system, and traverse do not require any special considerations. It is easy to pro-
gram the computer for setting up one equation for each observation.

The method of condition (Eq. 2) requires exactly n — u independent condi-
tions. There are difficulties involved: First, independent conditions are required;
for a complex network it is generally not easy to identify such conditions. Sec-
ondly, it is very difficult to program the computer as to find the n — « conditions
automatically. Traditionally, the various conditions were found manually.
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Preference is occasionally given to the method of Eq. 2 because there are only
n — u normal equations to be reduced as opposed to u« in the case of method
1. In the precomputer era, this difference in computational effort was significant,
especially if n — u << u. Today, when microcomputers readily perform all
computations in the surveyor’s office, it is more important that the adjustment
be performed completely automatically, i.e. the computer not only performs the
numerical work but should also “‘set-up’” the adjustment.

Merrop oF VariaTioN oF PARAMETERS

The least squares algorithm for the method of observation equations can be
found in any textbook on estimation. For the sake of subsequent studies, the
pertinent expressions are

V=AX+L

EL“ = ELb -
inwhich V=L, ~L,

in which L,, L,, and V = the n-dimensional vector of adjusted observations,
observed values, and residuals; X, X;, and X = the w-dimensional vector of
the adjusted parameters, approximate parameters, and the parameter corrections,
respectively; and L, = an n-dimensional vector containing the values of the func-
tion F, evaluated at X;,. The design matrix, A, has the size (n X u). 6, = a
posteriori variance of unit weight, and finally, 24 and %; = the variance-co-
variance matrices of the adjusted parameters and observations.

A linear function of the adjusted parameters and the respective variance-cov-
ariances is computed from the well-known law of variance-covariance propagation:

in which H = an (m X ») matrix for m linear functions. Egs. 15 and 16 can
be used to compute the adjusted distances and angles between points including
their variance-covariances.
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The variance-covariance matrix, 3y, reflects the geometry of the network.
Traditionally, this geometry is made visible by ellipses of standard deviations.
Expressions are given in Appendix 1.

Rank Derect v Horzontar Network ApJustments

Consider the case of a trilateration network in which only distances are ob-
served. Such a network can be translated as a whole and rotated in the plane
without changes in distances between points. The distances determine the relative
location of points and.not the absolute position of the points in the plane. An
alternative way of expressing this property is to say that distances are invariant
with respect to translation and rotation. The coordinate system serves only as
auxiliary means to express distances.

Consider the case of a triangulation network in which only angles are observed.
Such a network can be translated, rotated, and even magnified without any angles
undergoing changes. The size of the network cannot be determined from angle
measurements only. Thus, angles are said to be invariant with respect to trans-
lation, rotation, and scale.

A trilateration/triangulation network in which both distances and angles are
measured is invariant with respect to rigid translation and rotation. One distance
determines the size of the network.

The invariance of angles and distances, with respect to the definition of the
coordinate system (translation plus rotation) and the scale, is reflected by rank
deficiencies in the design matrix. Assume that a network consists of m stations.
Since each station contributes two parameters, one for each coordinate, there are
u = 2m columns in the design matrix A. Inspecting the coefficients of the A-
matrix yields the respective linear combinations of the columns.

The row of matrix A which pertains to a distance observation between stations
P, and P; contains the following elements:

dx; dy; dax; ay;
R X X Y
D D D D

i i i ]
The zero elements are represented by dots. The symbols written immediately
above the coefficients of Eq. 17 relate the columns to the individual parameters.

The vector of the unknown parameter corrections is
X' = (dx;, dy, ... dx, dy, ... dx;, dy; ... dx,, dy,)

in which D; = the distance between the points P; and P, as computed from the
approximate coordinates. The y-axis and the x-axis denote the ordinate and the
abscissa, respectively. The coefficients for angle observations, P, — P, - P,
as measured at P; from P, to P, in a clock-wise sense, are

dx, dy, dx; dy; dx, dy,
Y= Vi X X I =Y VTV XX XX Ty KT X
e > rant P -+ 5 — - — ... =~ 3 (19
D: D D D} D} D2 D% D%

In trilateration networks, the A-matrix consists of n rows of the type shown in
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Eq. 17. The following three linear relations can be readily verified:

1
with E, = (0 1

Yi THR Y2 XK.
In triangulation networks, the A-matrix consisis of rows of the type shown in
Eq. 19. The following four linear relations can be readily verified:

with B, = Vi TX Y2 TXp ... Yn

XN X Yaeo X, Yrm

In trilateration/triangulation networks, the A-matrix consists of rows of the type
shown in Egs. 17 and 19. It can be readily verified that Eqs. 20 and 21 apply
to this case.

- Free Nerwork ApsusTment

Because the columns of the design matrix are linearly dependent, the normal
matrix

is singular. The singularity will disappear if information about the definition of
the coordinate system, and possibly even the scale is introduced. This is accom-
plished by imposing as many constraints (conditions) upon the adjustment as
there is rank deficiency. Adjustments which incorporate no more and no less
conditions than are necessary to define the coordinte system and the scale lead
to so-called minimal constraint solutions, or ‘‘free network adjustments.”

Each specific choice of constraints results in a different adjustment. Some
quantities remain invariant with respect to such a choice; other vary. As shown
in Appendix I, the following quantities remain invariant: adjusted observation,
L,; variance-covariance matrix of the adjusted observations, I, ; estimated dis-
tances and angles and their variance-covariances, V, VPV, and &, (by impli-
cation). The variant quantities are those which carry information about the spe-
cific choice of the coordinate system. In Appendix II, the following quantities
are identified as variants: parameters, X; variance-covariance matrix of adjusted
parameters, 2y; and correlation matrix of the parameters (by implication}. The
auxiliary nature of the coordinates becomes apparent when realizing that angles,
distances, and their respective variance-covariances, as computed from the ad-
justed results, are invariant. Angles and distances are sometimes referred to as
estimable quantities in this context.

Constraining Subset of Coordinates.—The most simple method for intro-
ducing the minimal number of constraints is to assign numerical values to a
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FiG. 1.—Defining Coordinate System FIG. 2.—8ample Network Configuration

subset of coordinates. These coordinates, then, are considered constants and are
deleted from the parameter vector (Eq. 18). The respective columns of the design
matrix are deleted also. The origin of the coordinate system is defined by as-
suming arbitrary numerical values for the coordinates of some arbitrary station.
For example, the coordinates of P; are x; = u and y, = v. The values u and v
must not necessarily be zero. The coordinate system is oriented by assigning a
numerical value to another coordinate.

Fig. 1 shows the case where y; is assigned the value w. The adjustment can
“move’”’ the station P; only in the x-direction, as indicated by the arrows. The
coordinate w must be chosen such that the absolute value, jw — v|, does not
exceed the distance between stations P, and P;. In triangulation networks, the
scale of the network is defined by ﬁxmg the second coordinate of station P,. In
that case, the values assigned to the coordinates of P, are arbitrary. The dxstance
between P, and P;, as is implied by the assigned coordmate values, determines
the size of the network.

The network shown in Fig. 2 serves as a sample to demonstrate the effects
of various sets of minimal constraints. The network consists of uncorrelated angle
and distance observations. There is no need to list the actual observations since
these computations only serve to demonstrate the variant quantities, in particular
the ellipses of standard deviation. No attempt is made to report the adjustment
of real field observations. All adjustments use the same observations and
variances.

Figs. 3-5 show the error ellipses for the minimal constraints listed in Table
1. The figures show an obvious dependency of size, shape, and orientation of
the ellipses upon the choice of minimal constraints. The ellipses tend to increase
in size in proportion to their distance from the fixed station. The adjusted pa-
rameters are also different for each case. Their actual values are of no importance
to the present analysis and therefore are not rendered. The same is true for the
numerical values of the invariant quantities L,, 3;,, and V, V'PV, 6;, and any
distance or angle computed from the adjusted coordinates.

Implementation of minimal constraints by fixing three or four coordinates is
accomplished simply by deleting the respective columns from the design matrix.
However, there is one pitfall: The coordinate system may be ill-defined by some
particular set of minimal constraints. In such cases, even after the respective
columns have been deleted in the A-matrix, it is found that the remaining col-
umns are ‘‘numerically nearly”’ linear dependent, the normal matrix is “‘nu-
merically nearly’” singular, and the correlation matrix of the parameters exhibits
high correlation. In the extreme case, there is a ‘‘total”’ singularity. Such a sit-
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uation arises for the following minimal constraints: y; = 1,000., x; = 1,000.
= distance P,Ps + ys.

This set of constraints implies that the y-axis is parallel to the station P, and
P;. The station P, is allowed to move in the x-direction. The additional rank
defect, which is now solely due to this particular choice of coordinate system,
can be explained geometrically as follows: If the coordinate system is rotated
by a differentially small amount, then the change in the coordinate difference,
y1 — ¥s, is of second order, i.e. the change is a function of the square of dif-
ferential elements, whereas the change in x; — x5 is of the first order. Thus, the
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TABLE 1.—Sample Sets of Minimal Constraints

Constraint coordinates, in meters
(2)
vs = 1,000.00 x, = 1,000.00 x, = 1,000.00
yie = 1,000.00 x,, = 1,604.82 y, = 1,775.09
vie = 1,000.00 x, = 1,604.82 x, = 1,464.90

coordinate difference, y, — ys, is invariant with respect to a differential rotation,
given this particular choice of coordinate systems, and neglecting higher order
small terms. The mathematical model used in the adjustment is the linearized
part of the true nonlinear mathematical relation, as is well known. Thus, im-
posing a condition on y, — ys does not define the coordinate system; the coor-
dinate system still can be rotated by a differentially small amount without vio-
lating the conditions imposed.

For the limiting case where one of the axes is parallel to the two stations whose
coordinate difference of that axis is constrained, it is easy to verify analytically
the linear dependency of the columns of the design matrix. If the axis is nearly
parailel to the respective two stations, the columns are nearly linearly dependent.
Inversion of the normal matrix may be impossible on the computer because of
the limited number of significant digits. The adjustment is said to be ill condi-
tioned. The following three examples demonstrate this kind of ill-conditioning.
In each case, the angle between the line P, P; and the ordinate is altered, as
shown in Table 2. Fig. 6 shows the ellipses for all three cases. The ill-condi-
tioning decreases as the angular separation increases. The semimajor axes of the
error ellipses change dramatically by a factor of approximately four. The ellipses
become systematically narrower as the ill-conditioning increases (correlations
between the parameters increase). The orientation of the error ellipses changes
also. In the limiting case, where the y-axis is parallel to P P;, the error ellipses
degenerate into straight lines. These lines would be tangent to circles whose
center are at Py and which go through the station under consideration. The de-
generated error ellipses would indicate the direction of possible motion of the
station due to the lack of coordinate system definition.

It has been demonstrated that each adjustment must be considered together
with its specific set of minimal constraints. Pope (5) presents expressions for the
transformation of the parameter vector and the variance-covariance matrix due
to changes in the minimal constraints. One solution can be transformed into
another without redoing the adjustment. It is emphasized that the expressions
and properties listed in Appendix I apply only to a straightforward rotation of

TABLE 2.—Rotation of Coordinate System

Adjustment Approximate angle between ordinate and EI—’;
(1 {2}
1 5°
2 20°
3 45°
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FIG. 6.~lli Conditioned Adjustment Due to Coordinate System Definition

the coordinate system (after the adjustment) without a change in the underlying
minimal constraints.

Inner Constraint Solution.—Thus far, the minimal set of constraints is ap-
plied by simply removing three of four columns from the design matrix. It was
demonstrated that the error ellipses heavily depend on the specific choice of the
minimal set of constraints. This dependency is eliminated by choosing so-called
inner constraints

EX

The E matrix is given in Eq. 21 and 23. The number of conditions is again equal
to the rank defect of the design matrix. The inner constraints Eq. 25 encompass
all parameters; no column is deleted from the full design matrix.

The general formulation of the inner constrain solution can be stated as follows:
Find the solution for X of V = AX + L such that VPV is a minimum, and
that the condition, EX = 0, is fulfilled. This problem has been thoroughly in-
vestigated by Meissl (4) and Pope (5), both of which were primarily concerned
with three-dimensional networks. The solution is (5)

X = -N*ATPL
with N* = (A’PA + E'E)"' — E/(EE'EE))'E
and Iy = 6,N"

The (u X u) matrix, N7, is called the pseudoinverse of the normal matrix, N.

There are several alternative ways to compute the pseudoinverse. The attraction
of Eq. 27 is that E can be found readily without any extra computations. How-
ever, Eq. 27 involves the subtraction of two matrices which can cause numerical
problems since the computer operates only with a limited number of significant
digits. Such numerical difficulties arise when the station coordinates have large
numerical values. Usually, it will be possible to avoid these numerical difficulties
by increasing the computational accuracy (e.g. double precision to quadruple
precision) or by locating the origin of the coordinate system at the center of the
network.

There are many interesting properties associated with the pseudoinverse, but
most of them are not of direct concern to the contents of this paper. It is, im-
portant to note, however, that the inner constraints are just a particular set of
minimal constraints. All invariant quantities considered earlier also remain in-
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variant with respect to the inner constraints (Eq. 25). In Appendix III, a geo-
metric interpretation of the inner constraints in two-dimensional networks is con-
sidered. The fields of adjusted station positions and the approximate positions
are related by a zero translation and rotation (and scale) in the least squares
sense.

Fig. 7 shows the ellipses of standard deviation for the case of inner constraints.
There is one ellipse for each station. The size of the ellipses is generally smaller
than in other minimal constraint solutions. But, most importantly, the effect of
the coordinate system definition on the ellipses has disappeared altogether. The
shapes and sizes of the ellipses truely represent the geometry of the network.

ConcLusions

The concepts of minimal constraint solutions have been dealt with theoretically
and demonstrated by numerical examples. Two cases were considered: (1) Con-
ditions on a subset of the parameters; and (2) conditions encompassing all pa-
rameters. Case (2) was termed ‘‘inner constraint solution.”” It was shown that
numerical instabilities can still arise, even though the minimal number of con-
ditions is applied. Those difficulties rise for an ill-selected set of minimal con-
straints (case 1) and for large coordinate values (case 2). It was further dem-
onstrated that the adjusted observations, L, their variance-covariance matrix,
2., and consequently the quadratic form, V'PV, the a posteriori variance of
unit weight &;, and the residuals, V, are independent of the specific choice of
minimal constraints. The ellipses of standard deviation, on the contrary, depend
on the definition of the coordinate system.

The most simple way of applying minimal constraints is to delete a subset of
parameters. Numerical difficulties, due to the coordinate system definition, are
avoided by selecting the two stations as far apart as possible. Define the origin
by treating both coordinates of one station as constants (delete them from the
list of parameters). Orient the coordinate system by fixing one of the coordinate
of the other station. Take the x or y-axis to be parallel to both stations and hold
the y or x coordinate fixed respectively. If only angles are observed, all four
coordinates of both stations are kept constant.

Any minimal constraint solution is adequate for the statistical testing of the
quality of the observations, the detection of blunders, and the computation of
adjusted distances and angles and their variance-covariances. The inverse of the
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normal matrix should be computed only if necessary.

Inner constraint solutions are particularly useful in displaying the geometry of
the network since the size, shape, and orientation of the ellipses of standard
deviation are independent of the definition of the coordinate system. Such a
display of the ellipses, in connection with the ability to compute selected vari-
ances of distances and angles, provides a powerful tool to discover local geo-
metric weaknesses in a network and to find those additional observations which
would strengthen the figure most effectively. Those techniques are especially
useful in simulation studies prior to taking observations.

This study did not address the inner constraints required in the presence of
direction observations. Examples for this are found in Leick and Tyler (3).
Minimal constraints are sometimes applied by holding fixed one station and the
azimuth to another station. The corresponding minimal constraint solution, as
studied in this paper, would be to let one axis coincide with the direction between
the two stations and to hold the appropriate three coordinates fixed. Relative
ellipses of standard deviation between two stations are not considered either.
Since they are invariant with respect to the definition of the coordinate system,
they are another tool for the analysis of networks.

It is hoped that this paper is a help in clarifying questions regarding ellipses
of standard deviation. Most important of all, the ellipses of standard deviation,
as well as the standard deviations of the coordinates, depend on the definition
of the coordinate system. The statement that a point has been determined with
plus or minus x centimeters is, therefore, misleading and should give rise to
further questions. A safe and unique way is to quote the standard deviations of
observables, i.e. angles and distances as computed from adjusted coordinates.
One may rightfully ask the question, ‘““Why wasn’t the method of condition
equations (Eq. 2) used in the first place, since it deals with the angles and dis-
tances directly and does not use coordinates?”’ Recall that the method of ob-
servation equations has one big advantage: the adjustment can be completely
setup by the computer. The simple rule, ‘‘each observation—one equation,”’ can
be translated readily into the computer language. Even the surveyor’s own mi-
crocomputer can do the job.

Arrenoix |—Rorvationat Invariance oF Eiueses oF Stanparp Deviation

The size and shape of the ellipses of standard deviation, commonly referred
to as error ellipses, are given by the variance-covariance matrix, 2. Let o? and

%

FIG. 8.—Elements of Ellipse of Standard Deviation
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cryz denote the variances of the coordinates for some point 2,, and let o, be their
covariance. Then the elements of the ellipse of standard deviation are given by
the following well-known expressions:

o o;+al 1
semimajor axis a = —— t -w

2 2

o . |
semiminor axis b = 3 - 5 w

T 20
azimuth of semimajor axis sin 2 =

2 2

ol -
cos 2¢ = L™
w

w="V(d} - 0¥ + 402,

Elements a, b, and ¢ are shown in Fig. 8.
Assume that the coordinate system is rotated by the angle ¢ as expressed by
the transformation

R is an (# X u) rotation matrix whose elements are a function of ¢. Using the
elements of 2,, Egs. 29-~33 are obtained for the semimajor and semiminor axes
of the ellipses, after some algebraic computations. The azimuth of the semimajor
axis becomes

The azimuth, €, differs by the rotation angle, ¥, from the previous azimuth, ¢.
Thus, it is concluded that the size and the relative orientation of ellipses of
standard deviations remain invariant under rotation of the coordinate system.

Areenoix IL.—Invariant Quantimies v WMinivar Constraint Sowutions

In order to identify the invariant quantities, the least squares solution is derived
through appropriate orthogonal transformation. This approach requires knowl-
edge of some theorems from linear algebra which can be found in any textbook
on linear algebra, e.g. Graybill (1).

Without loss of generality, it is assumed for the purpose of this derivation that
the weight matrix is an identity matrix, i.e. P = I. There is always an orthogonal
transformation of the observation such that the transformed observations have
an identity matrix as weight matrix (2). Thus, the least squares solution can be
formulated as follows:
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Let r denote the rank of the design matrix. Let the matrix F be an (n X r) matrix
whose columns constitute an orthonormal basis for the column space of A (one
such choice for the columns of ¥ may be to take the normalized eigenvectors
of AAT). Let G be an (n X n — r) matrix such that (F:G) is orthogonal, i.e.
the colunns of G span the orthogonal complement of the column space of A or,
equivalently, G spans the null space of A”. From the definition of F and G, it
follows that

| _{F'F F'G\ _[rir 0
<GT>(FG) = <GTF GTG> = ( 0 ,,_,1,,_,>

Ol — T
(FG)| 7| =FF + GG™ =1

Next, the observation equations Eq. 37 are transformed orthogonally:

(&) v=(5) ax+ (5o

Introducing the new variables
zZ,=FL;, Z,=GL

Eqg. 44 can be written as

_ [V, _[FTAX YA

v () - (78

where Eq. 43 was used. The quadratic form (Eq. 39) remains invariant under
the orthogonal transformation since

VIV, = VIV, + VLV, = VIFF’ + GGNHV = VIV

The latter equality follows from Eq. 41. The actual quadratic form is obtained
from Eq. 46:

ViV, = (FTAX + Z)(FAX + 2)) + 7%z,

According to the principles of least squares, this expression must be minimized
through variation of the parameter X. Clearly, X is the only variable (unknown)
in Eq. 48. The matrices F and G are determined by the design matrix A, and
Z, and Z, are linear functions of the observations. Inspecting Eq. 48, it is seen
that there is no alternative for minimizing V2V, but taking X such that

The solution for X effectively eliminates the first term in Eq. 48 and yields for
the quadratic form

VIV, = VIV = ZIZ, = LGG'L

Thus, the first invariant quantity has been found. Since G is only dependent on
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the design matrix A, and L = L, — L,, the minimum of the quadratic form,
V'V, and, thus, VPV, is altogether independent of the parameter X. Conse-
quently the a posteriori variance of unit weight, 6y, is also invariant.

Eq. 49 provides r equations for the u parameters. Since u > r, and the rank
of F'A is 7, exactly u — 7 parameters can be selected arbitrarily; 4 ~ r is equal
to the rank defect of the normal matrix, which can amount to three or four in
two-dimensional networks. There is no limitation on the choice for selecting the
# — r parameters in Eq. 49. For example, one may simply equate the last u
— r parameters 1o zero, or to any other constant. This is identical to the procedure
considered earlier where a subset of station coordinates was held fixed. The
equation EX = 0 constitutes a set of u — r possible conditions which involve
all parameters.

Another group of invariant quantities is the residuals. Substituting Eq. 49 into
Eq. 46 gives

Jo- (%) &) - ()
s v =0 9 ) -

which is independent of the specific choice of X. Since L, = L, + V, the
adjusted observations are also invariant with respect to the choice of the minimal
constraints. As a consequence of this invariance, it follows from Eq. 37 that the
product

is invariant with respect to the alternative solution, X, and X,. Each of these
solutions has its own variance-covariance matrix, 2y, and Ex,., respectively. Ap-
plying the law of variance-covariance propagation to Eq. 49, it follows that

3, =FAI ATF=FA 3, ATF
Since F has full column rank, it must be that
AZ A=A Sy AT

Thus, the variance-covariance matrix of the adjusted observations

is also invariant with respect to the specific minimal constraints. It follows from
Eq. 52 that the covariance matrix of the adjusted residuals

3, = 2GG'GG” = 62GGT

is also invariant with respect to the choice of the parameters. Since

an alternative expression of 56 is
3, = 630 - GGY)
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Finally, the fact that the adjusted observations and their variances and covariances
are independent implies that any other distances and angles and their respective
variances and covariances, which are computed from the adjusted results, are
invariant.

Arrenpix L. —Geomerric InTEreRETATION OF InnER CONSTRAINTS

The minimal constraint solution with the specific constraints
EX=0

is called an Inner Constraint Solution. The matrix E is given in Egs. 21 and 23
for trilateration and triangulation networks. The conditions of Eq. 60 can be
rewritten as follows:

it
-

M DM

=

(idx; = x;dy) = 0

,
oy

3

2 (rdx; + ydy) = 0

r=1

The condition (Eq. 64) is used only in triangulation networks where only angles
are observed.

In order to arrive at the geometric interpretation, consider a similarity transfor-
mation between the adjusted coordinates, X, and the approximate coordinates,
X,. The translation rotation, and scale are determined in the least square sense.
The mathematical model is

X,=A+(1~bHR(@X,

in which A = the translation vector; 1 — k is the scale factor; and R(a) = the
{« X u) rotation matrix. Since the approximate coordinates are generally close
to the adjusted coordinates, the rotation angle, a, is expected to be small. Each
station contributes two equations to the model (65). For a small rotation angle,
these equations are for the station, P;

52)-(3)-(% 5)G)

This expression can be simplified as

x;+de) _ [Ax X; oy; X;
(y,- + dy;) - (Ay> * (yf) * ('axf) vk (y,)

in which the small terms of the second order were neglected.
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(5)-(8) - (=) =)
dy; Ay X Yi
The respective rows in the design matrix are
Ax Ay o k
A: [ 1 0 xi]
0 1 -x
This pattern of the A-matrix repeats for each point. The least squares estimate
of the parameters

= (x,y,a,k)
is X=-(ATA)'ATL

in which the identify matrix was used as a weight matrix. The L-vector is
L= Lg - LZ = _Lg = (—dxh _dyb —dx27 =dyy, ... *dxm’ —dy,) 72)

Using the full design matrix, which is indicated partially by Eq. 69, the product
AL becomes

S
"2 dy;
i=1

"2 (yidx; = x; dy)
i=1

m
_2 O dx; + y,dy)

i=]

However, the expressions in Eq. 73 are all zero according to the conditions of
Egs. 61-64.

It can be concluded that the inner constraint solutions, the information for the
coordinate system definition and the scale, if applicable, is derived from all ap-
proximate coordinates. The least squares estimates of the similarity transfor-
mation parameters are zero for a transformation between the point fields rep-
resented by X, and X,
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CovMuNITY GEOGRAPHIC DATA BASE?
By Henry A. Emery’

Asstracr: The need for a community geographic and utility management
system is reviewed. Information needs are identified, as are potential user
groups such as local goverment agencies, utility companies, and engineering
and surveying companies. The uses of such a management system are also
considered. Potential methods to accomplish a community geographic and
utility management information system are also analyzed. The results of sev-
eral projects in both the public and private sectors are presented.

InTRODUCTION

During the next ten years, we will witness the largest computer data entry in
the history of mankind. Geographic and utility data will be entered in far greater
amounts than what was accomplished during the approximately 40 year life of
computers. It is a matter of when, not if, the community geographic information
management systems will occur.

UnseLievaste?

A major U.S. county government has attempted to count the number of times
the information on a subdivision plat was redrawn-——they reached 150 redraws
and then stopped the count. Unbelievable, isn’t it? Another individual attempted
to find out how many aerial photography flights occurred in one year over a
major metropolitan area, finaling stopping at 50. Again, unbelievable? One utility
has more than 100 different map types to maintain costing in excess of $2 million
per year. In fact, these maps are not being maintained on a current basis; it
would take 80 person years and approximately $2.3 million to eliminate this
backlog. Unbelievable? One telephone company had to tell its regulatory agency
the number and type of poles in its system. It estimated a $4 million cost for
a one time inventory. Unbelievable?

Isolated examples, you contend, but representative of every metropolitan area
in the developed world. Every city, every county, every school district, every
water district, every sewer district, every recreation district, every electric utility,
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