Direction Cosines

/\ =z X | (X ] _m11 m,, m13__x_
y| =M Y |= My, My My Y
| Z Z_ | My My, Mgy Z_

consider the lower case image of the

unit vector [1,0,0] on the right

‘m,| [1] [cosa| [cosxX ]
m,, |=M|0|=]|cosf |=|cosyX
m;, 0| |cosy| |coszX

therefore the full matrix M expressed
via direction cosines would be

[ cosxX cosXY cosxZ |
M =|cosyX cosyY cosyZ
X | COS ZX coszY coszZ |

CE 503 — Photogrammetry | — Fall 2005 — Purdue University




Example 1, approximate the matrix

Ny 0, =k ~+30°
M =M (30) =
| cosx  sink O]
—sinxk cosx O
&/‘/V 0 0 1
X> (0866 05 O]
—-0.5 0.866 O
& 0 0 1
- -
Yy =M|N
_Z_ | h —

CE 503 — Photogrammetry | — Fall 2005 — Purdue University




Example 2, approximate the matrix

0, =k ~+90°
M=M (90)=
[ COSk  Sink

—SInNx COSK
0 0
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Example 3, approximate the matrix

approximate using

perspective center
M=MM,=M M,
K =6, ~—60°
=0 =+25
| 25 J [ cos(—60) sin(—60) O
=] M_=|-sin(—60) cos(—60) O
% X 0 0 1
E' 1 0 0
N M =|0 cos(25) sin(25)
|0 —sin(25) cos(25)
60 [ 05000 -0.8660 O
nadir M=| 0.7849 0.4532 0.4226
| —0.3660 -0.2113 0.9063

E
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Example 4, approximate the matrix

£ M =M. (90-20)M, (90)M., (110)

=M

-0.9397 -0.3420 0
M=| 01170 -0.3214 0.9397
-0.3214 0.8830 0.3420
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Extract the Angles for Order: a)¢1(

[ COS@COSx  COSwSink +SiNwSiN@CoSx SN wsin x —CoSwSin @ CoSx

M =|—-coSs@Sink COS@COSKx —SIN@SIN@SINK  SIN @ COSk + COSw SIN @ SIN k

sin g

—SInw CoS @ COS @ COS @

¢ — Sin_l(mm)

note : 2 possible values \

w=tan?| — My, /COS ¢
m33/COS¢

note : use 2 -argument arctan

to get correct quadrant

m,, /COS ¢

K = tan'l(_mﬂ/cowj

2 argument arctan

What if phi =90 deg ?,1.e. cos 90 =0
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Special case: phi=90 deg

[0 coswsSink+SiN@COSk  SiNwSsin k¥ —CoS@ COS k|
M=|0 coSwCoSkx —SinwSinx SIN®COSKx + COSwSIN kK
1 0 0

recall trig identities :
cos(a+b)=cosacosb—sinasinb
sin(a+b) =sinacosb+cosasinb

(0 sin(w+x) —cos(w+x)]
M=|0 cos(w+x) Ssin(w+k)
1 0 0

=> any pair of @, x with same sum yields

same matrix

=> no unique solution for w, x
=> It IS Indeterminant or singular
=> also known as gimbal lock
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Algebraic parameterization of rotation matrix

d*+a’—b*—c’ 2(ab+cd) 2(ac —bd)
M=| 2(ab-cd) d*—a’+b*—-c’ 2(bc +ad)
2(ac +bd) 2(bc—ad) d*—a®—-b*+c’

only 3independent parametersso we need constraint that
a’+b*+c°+d° =1

Claim: this one does not have singularities as exhibited by
the euler angle or sequential rotation method, but also no
easy interpretation of a,b,c,d.
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Rotation about a directed line in space

- a?(1-cosf)+cosd aB(l-cosd)—ysind ay(l—cosd)+ Bsind |
M=|af(l-cosd)+ysind pB°(L—cos@)+cosd® Ly(l—cosd)—asind

ay(l—cos@)— fsind  Py(l—cosd)+asind  y*(L—cosO)+coséd
must have only 3 independent parameters, can enforce unit length of line
direction vector

a’+p2+y° =1

Any rotation can be envisioned as a single rotation (theta) about a
directed line in space. The direction of the line is given by its unit
components: alpha, beta, gamma. Note that here alpha, beta, and
gamma are unit vector components — not angles as in the first slide
of this presentation
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A rotation can also be represented by a quaternion which is
closely related to its representation by the axis-angle matrix, on
the previous slide. A gquaternion is a kind of extended complex
number with 4 components, a scalar part and 3 vector
components with special rules for multiplication.

=0, +ql+q;]+0K

We will put aside arithmetic operations with quaternions and
just look at some of their properties to represent rotations.
They are used exclusively by the satellite remote sensing
community (NASA, Digital Globe, Orbimage, etc.) for
attitude specification. | believe the reason is that the only
singularity occurs when there is no rotation, i.e. the identity
matrix. Certain nadir views of the North Pole will yield
singularities.

CE 503 — Photogrammetry | — Fall 2005 — Purdue University




See text, appendix E for details, extracting axis-angle parameters

from matrix, ) ( M _1]
@ = Cos
o 1 _m32 — m23_
Fl= 2sin @ Mis =My
|V My, —My, |

Relate to the quaternion elements,

qS:cosg Cosé’:qf—(qi2+qf+c|f)
R P o g
o] L, a .

of :smE,B ﬂz\/z ——| (]
q ¥ 2 g +9; +0q, g
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Collinearity Equations for Frame Sensor

a=AA
XL’YL’ZL _X_ XO ] X o XL
y=Yo |[=AM| Y =Y,
fl \a - Z-7,
y _X_Xo_ my, My, My X_XL
/ / Y=VYo =AMy My My |l Y=Y,
X m Z-7

/ | — f | m31 32 m33 L

This is really 3 equations, divide the first two by the
third to eliminate the scale parameter, lambda

X=X _ mll(x - XL)+m12(Y _YL)+ml3(Z _ZL)

r —f My (X =X ) +Mg, (Y =Y )+ My (2 -2Z,)
y- yo _ m21(x B XL)"'mzz(Y _YL)"‘mzs(Z _ZL)

—f m31(X_XL)+m32(Y _YL)+m33(Z_ZL)

Y
This works for ground points defined by
coordinates, what if the “target” is defined
X X,Y,Z only by direction?
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Rearrange collinearity equations to give position in object
space for given image

X — X,

— f

Y=Y =AM

XX,
Y -Y,
-7,

point (with known height)

brlng Iambda and M Ieft

1
ZMT Y=Y,

— f

X - X,

Y -Y,
L-Z,

divide flrst two eqns by thlrd

11(X_ Xo) + m21(y_ yo) + m31(_ f) (Z

13(X_Xo)+m23(y_ yo)"'mss(_f)

~Z, )+ X, =X

My, (X —X5) + My, (Y — Yo ) + My, (= f)(Z i )+Y _y
My (X = Xo) + My (Y = Yg) + My (= 1)
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Directional Control

Divide the vector on the right by its length, R
and multiply on the left to keep equality. Now X=X m,Cy, +m,C, +m,C,

the vector elements on the right are just

direction cosines.

Rename them as (Cy,C,C,)

X=X, | m,,
Y—Yo = AR m,,
i — f | | my,

le
m22
m32

— f m,,C, +m,,C, +m,,C,
m T(X=x)/R] Y= Yo _ MuCyx +MyCy +MyC,
my | (Y=Y.)/R — f m31Cx + m32CY + m33CZ
Mss || (Z —ZL)/ R |

Now we have the image image points
defined only in terms of external directions.
This form can be used for stellar

[ X — X, | m, m, mg,]|C, photogrammetry where it is more
reasonable to use direction rather than
Y= Yo |=AR My My, My | Cy coordinates (which would require very large
— f m, my, Mgy CZ numbers). The direction reference can be
B - B - chosen in many ways. For stars, two
Divide as before to eliminate the factor lambda-R reasonable systems would be (1) the

tabulated Right Ascension and Declination,
and (2) the local Azimuth and Elevation
angles. (Some use Altitude angle instead of
Elevation angle)
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Use of collinearity equations to simulate a perspective view

ce503 test plot
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