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SAR IMAGE FORMATION:
ERS SAR PROCESSOR CODED IN MATLAB

(Copyright 2002, David T. Sandwell)

The Range-Doppler Algorithm (Curlander and McDonough, Synthetic Aperture Radar:
Systems & Signal Processing, Chapter 4, John Wiley & Sons, New York, 1991.)

The basic SAR theory is conceptually simple yet when one looks into the inner workings of the
SAR processor it appears quite complicated.  The most difficult part of the problem is related to
the coupling between the azimuthal compression and the orbital parameters.  In the old days
when the satellite orbits were not known very accurately, one would use techniques such as
clutterlock and autofocus to derive the orbital parameters from the data.  This is no longer
necessary with the high accuracy orbits available today.  A standard processing sequence follows
where the first two steps are done onboard the satellite while the remaining 4 steps are done by
the user with a digital SAR processor.

Processing Onboard the Satellite
Demodulate - The electromagnetic wave consists of a chirp of bandwidth B (~15 MHz)
superimposed on carrier frequency ωo (~5 GHz).   To record the return signal, one could simply
digitize the amplitude of the electric field E(t) at a sampling rate of 10 GHz using 1-byte
encoding.  However, this would generate 10 Gbytes of data every second!  We are really only
interested in how the chirp has been delayed and distorted by the reflection off the Earth’
surface.  The trick here is to use the shift theorem [Bracewell, 1978, p. 108] to isolate the 15
MHz part of the spectrum containing the chirp. Suppose we multiply the signal E(t) by 

€ 

ei2πωot .
This will shift the fourier transform of the signal as shown in the diagram below.

The function E(t) is a real-valued function so we know that its fourier transform has Hermitian
symmetry about the origin, that is E(-ω)=E*(ω ).  Because of this symmetry, all of the
information in the time series is contained within the bandwidth of a single spectral peak. Next
we low-pass filter the signal to isolate the spectral peak centered around the zero frequency.
The original signal E(t) was a real-valued function but after this shift/filter operation the output
complex.  No information is lost in this process and now the output can be digitized at the much
lower rate of twice the bandwidth of the chirp (~30 MHz).

       -ωo                    0                     ωo                       2ωo
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Digitize – The complex signal is digitized at 5 bits per pixel so the numbers range from 0 to 31;
the mean value is about 15.5.  Digitizing the data at 8 bits per pixel would seem more convenient
but sending these extra 3 bits to the ground receiving exceeds the bandwidth of the telemetry so
every effort is made to compress the data before transmission.  Once the data are on the ground
they are expanded to 8 bits (one byte) for programming convenience.  Engineers refer to the real
and imaginary parts of the signal as the in-phase (I) and quadrature (Q) components.   The raw
signal files contain rows of (11644 bytes) that represent a single radar echo.  The first 412 bytes
are timing and other information while the remaining 11232 bytes contain the 5616 complex
numbers of raw signal data.

Digital SAR Processing
The digital SAR processor is a computer program that converts the raw signal data into a single-
look complex (SLC) image. An overview is provided in the diagram below this is followed by a
detailed description of each step.  With this information one can write a basic SAR processor
using just a few lines of code in MATLAB. An example program is provided in the Appendix.
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Digital SAR Processing Overview

(1)
Range compression performed on each radar echo

(2)
Patch processing of range-compressed echos

(3)
Range migration performed on each pixel of range-compressed

data whose columns have been fourier transformed

(4)
Azimuth compression performed on each column of range-

compressed, range-migrated data

Parameter
file

Single Look
Complex (SLC)
image data file

Raw signal
data file
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Raw Signal Data

range

azimuth
patch

incomplete aperture

complete aperture

incomplete aperture

412 bytes                    11232 bytes – 5161 complex numbers
timing                         raw signal data
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Parameter File (e2_10001_2925.PRM)

file information/format
input_file e2_10001_2925.fix name of raw data file
SC_identity 2 (1) – ERS-1 or (2) – ERS-2
bytes_per_line 11644 number of bytes in row of raw data
first_sample 206 412 bytes of timing information to skip over
fd1 248.115 Doppler centroid estimated from data fDc
I_mean 15.504000 mean value of real numbers
Q_mean 15.549000 mean value of imaginary numbers
icu_start 2576039268.848 spacecraft clock for first sample
SC_clock_start 1997078.767881851 UTC for first sample YYYDDD.DDDDDDDD
SC_clock_stop 1997078.768074699 UTC for last sample YYYDDD.DDDDDDDD

radar characteristics
PRF 1679.902394 pulse repitition frequency PRF
rng_samp_rate 1.89625e+07 range sampling rate fs
chirp_slope 4.17788e+11 chirp slope k
pulse_dur 3.712e-05 pulse duration τp

radar_wavelength 0.056666 radar wavelength λ

orbital information
near_range             829924.365777 distance to first range bin Rnear
earth_radius 6371746.4379 earth radius 1/2 way into image Re
SC_height  787955.52 spacecraft height 1/2 way into image H
SC_vel 7125.0330 ground-track velocity V

processing information
num_valid_az 2800 size of patch to process
num_patches 10 number of patches to process
first_line 1
deskew n deskew (yes or no)
st_rng_bin 1 start processing at row number
num_rng_bins 6144 number of range bins in output file
chirp_ext 614 extend the chirp to process outside swath
Flip_iq n exchange real and imaginary numbers (yes or no)
nlooks 1 number of azimuth echoes to average

image alignment
rshift 15.1 range shift to align image to master
ashift 483.2 azimuth shift to align image to master
stretch_r .0014569 range stretch versus range
stretch_a -.0019436 azimuth stretch versus range
a_stretch_r 0.0 range stretch versus azimuth
a_stretch_a 0.0 azimuth stretch versus azimuth
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(1) Range Compression – A sharp radar pulse is recovered by deconvolution of the chirp.
This is done with fast fourier transform.  There are 5616 points in the ERS-1 signal data
and the chirp is 703 points long.  Both are zero-padded to a length of 8192 prior to
deconvolution to take advantage of the speed radix-2 fft algorithms.  (Later we keep 6144
points, which enables one to extract the phase beyond the edges of the original swath.
Since the chirp really did interact with the ground outside the digitized swath, this is not
magic.  The number 6144 has small prime factors that may be optimal for later 2-D fft
phase unwrapping algorithms.)

(2) Patch Processing – The next step is to focus the image in the along-track or azimuth
direction.   This is also done by fft, but now we need to process columns rather than rows.
For the ERS radar, the synthetic aperture is 1296 points long so we need to read at least
that many rows into the memory of the computer.  Actually 4096 rows is better number
since it is a power of 2.  A typical ERS raw data file has 28,000 rows so we will need to
process many of these patches.  One problem with this approach is that the synthetic
aperture is only complete for the inner 2800 points of the 4096 data patch so the patches
must have a 1296-point overlap. A 4096 x 5616 patch requires at least 184 Mbytes of
computer memory for single precision real numbers.  In the old days before this large
memory space was available, each patch was transposed - corner turning – using high-
speed disks so the data could be processed on a column-by-column basis.  Nowadays a
multiprocessor computer could process many patches in parallel and assemble the output
files in the proper order since the overlapping patches are independent.

(3) Range Migration – As we will see below, a point target will appear as a hyperbolic-
shaped reflection as it moves through the synthetic aperture.  In addition, there could be a
pronounced linear drift due to an elliptical orbit and earth rotation.  In other words, the
target will migrate in range cell as a linear trend plus a hyperbola.  The shape of this
migration path is calculated from the precise orbital information.   Prior to focusing the
image along a single column, these signals must be migrated back to a constant range
cell.  This is called range migration and the fastest way to do this is by fourier
transforming the columns first.  Each fourier component corresponds to a unique Doppler
shift and also a unique value of range migration; For an ideal radar, the first component
will have zero Doppler and will correspond to the point on the earth that is perpendicular
to the spacecraft velocity vector.  The second component will have a small positive
Doppler shift and a small migration of the range cells will be needed -  and so on all the
way throught the positive and negative Doppler spectrum.

(4) Azimuth Compression – The final step in the processing is to focus the data in azimuth by
accounting for the phase shift of the target as it moves through the aperture.  In the
lecture on diffraction, we calculated the illumination pattern on a screen due to the
propagation of a coherent wave from the aperture to the screen.  The azimuth
compression relies on the same theory although we do the opposite calculation – given
the illumination pattern, calculate the shape of the aperture (reflectivity of the target).
This is done by generating a second frequency-modulated chirp where the chirp
parameters depend on the velocity of the spacecraft, the pulse repetition frequency (PRF),
and the absolute range.  The chirp is fourier transformed into Doppler space and
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multiplied by each column of range-migrated data.  The product is inverse fourier
transformed to provide the focused image.

Single-Look Complex (SLC) Image – As described above, only the inner 2800 rows use
the complete synthetic aperture so these are written to an output file.  The file-reading
pointer is moved back 1296 rows to start the processing of the next patch.  Because
complete apertures are used for each patch, they will abut seamlessly.

Range Compression
To reduce the peak power of the radar transmitter associated with a short pulse, a long
frequency-modulated chirp is emitted by the radar.  This chirp propagates to the ground where it
reflects from a swath typically 100 km wide.  When it returns to the radar, the raw signal data
consists of the complex reflectivity of the surface convolved with the chirp.  Our objective is to
recover the complex reflectivity by deconvolution of the chirp.  As discussed above, this is the
first step in the digital SAR processor.   For the ERS-radar, the frequency-modulated chirp is

€ 

s(t) = eiπkt
2
            t < τ p /2 .

where
k - chirp slope (4.17788 x 1011 s-2)
τp - pulse duration (3.712 x 10 –5 s or ~11 km long)
fs - range sampling rate (1.89625 x 107 s-1).
An example of a portion of the chirp for the ERS- radar as well as its power spectrum and
impulse response is shown below.
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The bandwidth of the chirp, 

€ 

B = kτ p , has a value of 15.5 MHz for the ERS radar.  A matched
filter is used to deconvolve the chirp from the data.  In this case, the matched filter is simply the
complex conjugate of the chirp or 

€ 

s*(t) = e− iπkt
2
.  The convolution of s*(t) and s(t)  is shown in the

figure above.  The effective range resolution of the radar is about 27 m.

Using MATLAB code (Appendix) and the radar parmaters provided above, one can deconvolve
the ERS chirp. The figure below is a small patch of ERS-2 data for an area around Pinyon Flat,
California (track 127, frame 2925, orbit 10001).  This area contains two radar reflectors (see
figure below) spaced about 600 m apart that were installed in late 1996.  The amplitude of the
raw signal data appears as noise with a single horizontal streak due to missing data.  The range-
compressed data (right image) shows two vertical streaks due to the high reflectivity of the
reflectors (red circles) as they migrate through the synthetic aperture.
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Azimuth Compression
Azimuth compression or azimuth focusing involves generation of a frequency-modulated chirp
in azimuth based on the knowledge of the spacecraft orbit.  The geometry of the strip-mode
acquisition is shown below.

s – slow time along the satellite track
x – ground-track position
V – ground track velocity
so – time when the target is in the center of the radar illumination pattern
H – spacecraft height
Rg – ground range
R(s) – range from spacecraft to target
Ro = 

€ 

H 2 + Rg
2 = Rnear + n * (C / fs) minimum range from the spacacraft to the target

The complex phase of the return echo is

€ 

C(s) = exp i 4π
λ
R(s)

 

  
 

  

s

H

Rg

(x-sV)

R(s) x
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where the range is

€ 

R2(s) = H 2 + Rg
2 + x − sV( )2.

This is a hyperbola that we can approximate using a parabola

€ 

R(s) = Ro + ˙ R o(s− so) +
˙ ̇ R o
2

(s− so)2 + ...

where the dot indicates derivative with respect to slow time, s.  Curlander and McDonough
[1991] discuss the accuracy of this polynomial approximation.   Is is good enough for strip-mode
SAR but may be inadequate for the much longer apertures associated with spotlight-mode SAR.

Now we need to calculate 

€ 

˙ R  and 

€ 

˙ ̇ R  in terms of spacecraft parameters.  Lets start with 

€ 

˙ R  by
taking the derivative of R2 with respect to s.

€ 

∂R2

∂s
= 2R ˙ R                    ⇒                   ˙ R = 1

2R
∂R2

∂s

We note that 

€ 

˙ R o  is the velocity of the spacecraft in the range direction at the time 

€ 

so  and thus a
measure of the Doppler shift when the target is in the center of the radar illumination pattern.

€ 

˙ R o = −V
x − soV( )

Ro

The range acceleration 

€ 

˙ ̇ R  is the derivative of the range rate 

€ 

˙ R .

€ 

˙ ̇ R = ∂
∂s

1
2R

∂R2

∂s
 

 
 

 

 
 =

1
2

1
R

∂ 2R2

∂s2

 

 
 

 

 
 +

−1
R2

∂R
∂s
 

 
 

 

 
 
∂R2

∂s
 

 
 

 

 
 

 

 
 

 

 
 

This can be written as

€ 

˙ ̇ R = V 2

R
+
−V 2 x − sV( )2

R3 =
V 2

R
1− x − sV( )2

R2

 

 
 
 

 

 
 
 
.

For the orbital characteristics of the ERS spacecraft, the second term is small so we have

€ 

˙ ̇ R o ≅
V 2

Ro

Now we can write the phase of the return signal as a function of geometry and speed
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€ 

C(s) = exp i 4π
λ

Ro
2 + ˙ R o s− so( ) + ˙ ̇ R o s− so( )2 /2[ ] 

 
 

 
 
 

or

€ 

C(s) = exp i 4πRo
2

λ

 
 
 

 
 
 
exp i2π −2V

λ

x − soV( )
Ro

s− so( ) +
2V 2

λRo

s− so( )2 /2
 

 
 

 

 
 

 
 
 

 
 
 

Note that this function is another frequency-modulated chirp where and there are two important
parameters the Doppler centroid

€ 

fDC =
−2V
λ

x − soV( )
Ro

and the Doppler frequency rate

€ 

fR =
2V 2

λRo

.

An example of this azimuthal chirp function for the ERS orbit/radar as well as its power
spectrum and impulse response are shown below.

Doppler
centroid

Doppler
frequency
rate
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The bandwidth of the azimuthal chirp is equal to the pulse repition frequency (PRF = 1680 Hz).
In this case the matched filter is simply the complex conjugate of the azimuthal phase function or
C*(s).

Azimuthal Compression Parameters and ERS Orbit
The Doppler centroid and Doppler frequency rate depend on the ground velocity of the
spacecraft V, the wavelength of the radar λ, the minimum distance between the spacecraft and

the target 

€ 

Ro , and a factor 

€ 

x − soV
Ro

 which is the squint angle.

Ground velocity - First consider the ground velocity of the spacecraft.  Precise orbital
information is used to compute the velocity of the spacecraft at satellite altitude Vs. As an
exercise, show that the ground velocity is

€ 

V =
Vs

1+
H
Re

 

 
 

 

 
 

1/ 2

where H is the local spacecraft height and Re is the local earth radius.

Range - The quantity 

€ 

Ro  is the range to a particular column in the raw signal data file.

€ 

Ro = Rnear + n(c /2 f s)

where 

€ 

Rnear  is the near range to the first column of the raw signal data file, n is the column
number (0-5615), c is the speed of light and fs is the range sampling rate given in the previous
section on range compression.

Squint angle - Finally lets examine the quantity, 

€ 

x − soV
Ro

.  This is related to something called the

squint angle, γ, as shown in the following diagram.

s

 γ

Ro

x - soV
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The squint angle is simply

€ 

γ = tan−1 x − soV
Ro

 

 
 

 

 
 .

For the ERS satellites, the squint angle is adjusted so the zero Doppler occurs roughly in the
center of the antenna beam pattern.  If the satellite orbit was circular and the earth was a non-
rotating sphere, then the zero Doppler would correspond to a zero squint angle.

For interferometry it is important that the beam patterns of the reference and repeat orbits have a
large overlap at a given along-track spacecraft position.  The requirement is that the Doppler
centroid of the reference and repeat passes agree to about 1/2 of the pulse repetition frequency
(PRF).  In late 1999, the gyroscopes on ERS-2 failed so it became difficult to control the squint
angle of the spacecraft.  Data acquired after this date may a Doppler centroid outside of the
acceptable range and thus may be useless for interferometry.

Using MATLAB code (Appendix) and the azimuth compression provided above, one canfocus
the image in the azimuth direction.  The figures below the same small patch of ERS-2 data for an
area of Pinyon Flat, California. The range-compressed data (left image) shows two vertical
streaks due to the high reflectivity of the reflectors (red circles) as they migrate through the
synthetic aperture.  The fully focused image (right) shows the high point-like reflectivity
associated with the two radar reflectors.
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Appendix – MATLAB Code for Focusing ERS Signal Data

%****************************************************
function [cref,fcref]=rng_ref(nfft,fs,pulsedur,slope)
%
%  routine to compute ERS chirp and its fourier
transform
%
%  input
%   fs       - sampling frequency, ts=1./fs
%   pulsedur - pulse duration
%   slope    - chirp slope
%
%   set the constants and make npts be odd
%
  npts=floor(fs*pulsedur);
  ts=1./fs;
  if(mod(npts,2.0) ==  0.0)
          npts=npts+1;
  end
%
%  compute the reference function
%
  npt2=floor(npts/2.);
  t=ts*(-npt2:npt2);
  phase=pi*slope*t.*t;
  cref1=exp(i*phase);
%
%  pad the reference function to nfft
%
  cref=[cref1,zeros(1,nfft-npts)]';
%
%  compute the fourier transform
%
  fcref=fft(cref)/nfft;

%****************************************************
  function [cazi,fcazi]=azi_ref(nazi,PRF,fdc,fr)
%
% routine to compute ERS azimuthal chirp and its
fourier transform
%
%  input
%   nazi     -  number of points in azimuth
%   PRF      -  pulse repitition frequency, ts=1./fs
%   fdc      -  doppler centriod frequency
%   fr       -  doppler frequency rate
%
%   set the constants and make npts be odd
%
  npts=min(nazi-1,1296);
  ts=1./PRF;
  if(mod(npts,2.0) ==  0.0)
          npts=npts+1;
  end
%
%  compute the azimuth chirp function
%
  npt2=floor(npts/2.);

  t=ts*(-npt2:npt2);
  phase=-2.*pi*fdc*t+pi*fr*t.*t;
  cazi1=exp(i*phase);
%
%  pad the function to nfft
%
  cazi=[cazi1(npt2:npts),zeros(1,nazi-
npts),cazi1(1:npt2-1)]';
%
%  compute the fourier transform
%
  fcazi=fft(cazi)/nazi;

%****************************************************
function [csar,nrow,ncol]=read_rawsar(sar_file)
%
%  routine to read and unpack ERS SAR data in
DPAF format
%
  fid=fopen(sar_file,'r');
%
%  read the bytes
%
  [sar,nsar]=fread(fid,'uchar');
  sar=reshape(sar,11644,nsar/11644);
  nrow=nsar/11644;
  ncol=5616;
  st=fclose(fid);
%
%  extract the real and imaginary parts
%  and remove the mean value
%
  csar=complex(sar(413:2:11643,:)-
15.5,sar(414:2:11644,:)-15.5);
%

%****************************************************
%  matlab script to focus ERS-2 signal data
%
%  set some constants for e2_10001_2925
%
%  range parameters
%
 rng_samp_rate = 1.896e+07;
 pulse_dur = 3.71e-05;
 chirp_slope = 4.1779e+11;
%
% azimuth parameters
%
 PRF=1679.902394;
 radar_wavelength=0.0566666;
 SC_vel=7125.;
%
%   compute the range to the radar reflectors
%
 near_range=829924.366;
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 dr=3.e08/(2.*rng_samp_rate);
 range=near_range+2700*dr;
%
%  use the doppler centroid estimated from the data
and the
%  doppler rate from the spacecraft velocity and
range
%
 fdc=284;
 fr=2*SC_vel*SC_vel/(range*radar_wavelength);
%
%  get some sar data
%
 [cdata,nrow,ncol] = read_rawsar('rawsar.raw');
%
% make a colormap
%
  map=ones(21,3);
  for k=1:21;
    level=0.05*(k+8);
    level=min(level,1);
    map(k,:)=map(k,:).*level;
  end
  colormap(map);
%
%  image the raw data
%
  figure(1)
  subplot(2,2,1),imagesc(abs(cdata'));
  xlabel('range')
  ylabel('azimuth')
  title('unfocussed raw data')
  axis([2600,2900,1000,1200])
%
%  generate the range reference function
%

[cref,fcref]=rng_ref(ncol,rng_samp_rate,pulse_dur,chir
p_slope);
%
%  take the fft of the SAR data
%
  fcdata=fft(cdata);
%
%  multiply by the range reference function
%
  cout=0.*fcdata;
  for k=1:nrow;
  ctmp=fcdata(:,k);
  ctmp=fcref.*ctmp;
  cout(:,k)=ctmp;
  end
  clear cdata
%
%  now take the inverse fft
%
  odata=ifft(cout);
  clear cout

%
% plot the image and the reflector locations
%
  x0=[2653.5,2621];
  x0=x0+90;
  y0=[20122,20226];
  y0=y0-19500+427;
  figure(1)
  hold
  subplot(2,2,2),imagesc(abs(odata'));
  plot(x0,y0,'o')
  xlabel('range')
  ylabel('azimuth')
  title('range compressed')
  axis([2600,2900,1000,1200])
%
%  use this for figure 2 as well
%
  figure(2)
  colormap(map);
  subplot(2,2,1),imagesc(abs(odata'));
  hold on
  plot(x0,y0,'o')
  xlabel('range')
  ylabel('azimuth')
  title('range compressed')
  axis([2600,2900,1000,1200])
%
%  generate the azimuth reference function
%
  [cazi,fcazi]=azi_ref(nrow,PRF,fdc,fr);
%
%  take the column-wise fft of the range-compressed
data
%
  fcdata=fft(odata');
%
%  multiply by the azimuth reference function
%
  cout=0.*fcdata;
  for k=1:ncol;
  ctmp=fcdata(:,k);
  ctmp=fcazi.*ctmp;
  cout(:,k)=ctmp;
  end
%
%  now take the inverse fft and plot the data
%
  odata=ifft(cout);
  figure(2)
  subplot(2,2,2),imagesc(abs(odata));
  hold on
  plot(x0,y0,'o')
  xlabel('range')
  ylabel('azimuth')
  title('range and azimuth compressed')
  axis([2600,2900,1000,1200])


