

Uncertain Geometry for Image Analysis

Wolfgang Förstner

University of Bonn

Purdue, 20. March 2008

Wolfgang Förstner Purdue, 20. March 2008

Uncertain Geometry for Image Analysis

Geometric Tasks in Image Analysis

Wolfgang Förstner Purdue, 20. March 2008

Uncertain Geometry for Image Analysis

Real Images with image features

Aggregating individual features to larger entie:

- Aggregating edge pixels to edges
- Concatenation of edges
- aggregating regions to larger ones
- aggregating symmetric parts

Example: Aggregating edge points

Given: edge points $\chi_n, n = 1, ..., N$ Unknown: edge (y, z)

Method:

- 1. Determining fitting line l
- 2. Determining starting and end point $y \in l$ und $z \in l$

Quastions:

- Do all points belong to edge?
- How accurate is line?
- How accurate are end points?

Determination of 3D-structures from image

structures

Reconstruction of 3D-objects from image information

- Surfaces
- Polyhedra
- Zylinders
- ► 3D-Lines

universität**bonn**

Example: Forward intersection with points and lines

Observed: Image points and lines in 4 images Given: Orientation data of images 1 to 4 Unknown: 3D-Coordinates of point

Method:

- 1. Determination of approximate values
- 2. Optimal estimation

Quastions:

- Are Observations consistent?
- How accurate is result?
- What effect do errors in correspondence have?

Determination of pose of camera at time of exposure

- Single cameras
- Multiple cameras
 - Aerial images (50 to 20000)
 - ► Video sequences (≥ 1500/min)
- with and without knowledge of calibration

Example: Orientation of camera from points and lines Given: 3D-points and 3D-lines, streight line preserving mapping Observed: Image points and lines Unknown: Orientation and Calibration of single camera

Method:

- 1. Check of observations
- 2. Determination of approximate values
- 3. Optimal Estimation
- Questions (as above)
 - Are observations consistent?
 - How accurate is the result?
 - What effect have correspondence errors onto the result?

- Determination of geometric entities Intersection point, projection ray, ...
- Check of constraints Collinearity, Consistency, ...
- Estimation of parameters of lines, orientations, ...
- under uncertainty

- Unavoidable random deviations can be modeled stochastically, approximately Gaussian
- Calibration errors: systematic, model errors, small deterministic or stochastic
- Occlusions: Missing points, parts of edges, pars of regions systematic, model errors, large: may be modeled stochastically
- Correspondence errors, identification errors, detection errors glarge, not systematic: may be modeled stochastically
- Distribution of image features may be modeled stochastically

Representation of Geometry

Wolfgang Förstner Purdue, 20. March 2008

Uncertain Geometry for Image Analysis

Simple entities:

- distinct points, positions , …
- straight image edges, -lines
- straight edge segments, line segments

Representation in homogeneous coordinates distinct points, postions, ...

$$\boldsymbol{\chi}: \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = w \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_0 \\ x_h \end{bmatrix}$$

with Euclidean coordinates

straight edges

$$\ell: \quad \mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{a^2 + b^2} \begin{bmatrix} \cos \phi \\ \sin \phi \\ -s \end{bmatrix} = \begin{bmatrix} \mathbf{l}_h \\ \mathbf{l}_0 \end{bmatrix}$$

with normal $[\cos \phi, \sin \phi]^{\mathsf{T}}$ and distance s to origin straight edge segment, line segment

$$s: (u, v) \leftrightarrow (k, m, n)$$

starting and end point u und vor line k and limiting lines m und n

Simple entities:

- ▶ Distinct points, corner, nodes, ...
- Straight lines
- Planes
- Straight edge segments, line segments

Representation in homogeneous Coordinates Distinct points, corner, nodes, ...

$$\boldsymbol{X}: \quad \mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} U \\ V \\ W \\ T \end{bmatrix} = T \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_0 \\ X_h \end{bmatrix}$$

Planes

$$\mathcal{A}: \quad \mathbf{A} = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \sqrt{A^2 + B^2 + C^2} \begin{bmatrix} \mathbf{N} \\ -S \end{bmatrix} = \begin{bmatrix} \mathbf{A}_h \\ A_0 \end{bmatrix}^{\bullet}$$

with normal \boldsymbol{N} and distance S from origin ${\sf x}$

straight lines: Plücker-Coordinates

$$\mathcal{L}: \quad \mathbf{L}_{6\times 1} = \left| \begin{array}{c} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \\ L_6 \end{array} \right| = \left[\begin{array}{c} \mathbf{L}_h \\ \mathbf{L}_0 \end{array} \right]$$

22

linear as join of two points

$$X\left(\left[\begin{array}{c} \mathbf{X}\\1\end{array}\right]\right) \qquad \mathcal{Y}\left(\left[\begin{array}{c} \mathbf{Y}\\1\end{array}\right]\right)$$
$$\mathcal{L} = \mathbf{X} \land \mathcal{Y}: \quad \mathbf{L}_{6\times 1} = \left[\begin{array}{c} \mathbf{Y} - \mathbf{X}\\\mathbf{X} \times \mathbf{Y}\end{array}\right] = \prod_{6\times 4} (\mathbf{X}) \mathbf{Y}_{4\times 1} = -\prod_{6\times 4} (\mathbf{Y}) \mathbf{X}_{4\times 1}$$

with $6\times 4\text{-matrix }\Pi(\mathbf{X})\text{, depending on }\mathbf{X}$

Pi-Matrix

$$\Pi(\mathbf{X}) = \begin{bmatrix} X_4 & 0 & 0 & -X_1 \\ 0 & X_4 & 0 & -X_2 \\ 0 & 0 & X_4 & -X_3 \\ 0 & -X_3 & X_2 & 0 \\ X_3 & 0 & -X_1 & 0 \\ -X_2 & X_1 & 0 & 0 \end{bmatrix}$$

Plückermatrix

$$\Gamma(\mathbf{L}) = \begin{bmatrix} 0 & L_6 & -L_5 & -L_1 \\ -L_6 & 0 & L_4 & -L_2 \\ L_5 & -L_4 & 0 & -L_3 \\ L_1 & L_2 & L_3 & 0 \end{bmatrix} \qquad \Gamma(\mathcal{X} \land \mathcal{Y}) = \mathbf{X} \mathbf{Y}^{\mathsf{T}} - \mathbf{Y} \mathbf{X}^{\mathsf{T}}$$

3

24

linear as intersection of two planes

$$\mathcal{L} = \mathcal{A} \cap \mathcal{B}$$
: $\mathbf{L} = \overline{\mathbf{\Pi}}(\mathbf{A}) \mathbf{B} = -\overline{\mathbf{\Pi}}(\mathbf{B}) \mathbf{A}$

with 6×4 -matrix $\overline{\Pi}(\mathbf{X})$, depending on \mathbf{X}

 $\overline{\Pi}(\mathbf{A}) = D_6 \Pi(\mathbf{A})$

Matrix for dualling lines (exchanging first and second triplets of rows)

$$\mathcal{D}_6 = \left[\begin{array}{cc} \mathbf{0} & I_3 \\ I_3 & \mathbf{0} \\ 6 \times 6 \end{array} \right]$$

dual Plücker matrix

$$\overline{\Gamma}(\mathbf{L}) = \begin{bmatrix} 0 & L_3 & -L_2 & -L_4 \\ -L_3 & 0 & L_1 & -L_5 \\ L_2 & -L_1 & 0 & -L_6 \\ L_4 & L_5 & L_6 & 0 \end{bmatrix}$$

 $\overline{\Gamma}(\mathcal{A} \cap \mathcal{B}) = \mathbf{A}\mathbf{B}^{\mathsf{T}} - \mathbf{B}\mathbf{A}^{\mathsf{T}}$

Straight lines segments

$$\mathcal{S}(\mathcal{U},\mathcal{V}) \leftrightarrow \mathcal{S}(\mathcal{M},\mathcal{B},\mathcal{C})$$

```
starting and end point \mathcal U und \mathcal V
or
line \mathcal M and limiting planes \mathcal B and \mathcal C
```


straight line preserving mappings: projectivities, homographies straight line preserving planar mapping

$$\mathbf{x}'_{3\times 1} = \mathop{\mathsf{H}}_{3\times 3} \mathop{\mathbf{x}}_{3\times 1}$$

8 degrees of freedom: translation (2), rotation (1), scale (1), affinity (2), projektivity (2)

straight line preserving spatial mapping

$$\mathbf{X}'_{4\times 1} = \mathbf{H}_{4\times 4} \mathbf{X}_{4\times 1}$$

15 degrees of freedom: translation (3), rotation (3), scale (3), affinity (3), projektivity (3)

distance to origin:

$$d_{xO} = \frac{|\boldsymbol{x}_0|}{|x_h|} \quad d_{lO} = \frac{|l_0|}{|l_h|} \quad d_{XO} = \frac{|\boldsymbol{X}_0|}{|X_h|} \quad d_{LO} = \frac{|\boldsymbol{L}_0|}{|\boldsymbol{L}_h|} \quad d_{AO} = \frac{|\boldsymbol{A}_0|}{|A_h|}$$

entities at infinity: if homogeneous part is 0
2D:
$$\begin{bmatrix} x_0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$

$$\chi_{\infty}: \begin{bmatrix} \boldsymbol{x}_0 \\ 0 \end{bmatrix} \quad \boldsymbol{\ell}_{\infty}: \begin{bmatrix} \boldsymbol{0} \\ 1 \end{bmatrix}$$

3D:

$$\mathcal{X}_{\infty}: \begin{bmatrix} \mathbf{X}_{0} \\ 0 \end{bmatrix} \quad \mathcal{L}_{\infty}: \begin{bmatrix} \mathbf{L}_{0} \\ \mathbf{0} \end{bmatrix} \quad \mathcal{A}_{\infty}: \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}$$

Geometric image analysis

Projection of 3D-object-point X to 2D-image points:

$$\mathbf{x}'_{3\times 1} = \Pr_{3\times 4} \mathbf{X}_{3\times 1}$$

with projection matrix

$$\underset{3\times4}{\mathsf{P}} = [p_{ij}] = \begin{bmatrix} \mathbf{A}^{\mathsf{T}} \\ \mathbf{B}^{\mathsf{T}} \\ \mathbf{C}^{\mathsf{T}} \end{bmatrix} = [\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4]$$

A are planes of coordinate system of camera S_c $\mathbf{p}_i = \text{images of points at infinity of axes}$ $\mathbf{p}_4 = \text{image of origin}$ $[p_{31}, p_{32}, p_{33}]^{\mathsf{T}} = \text{viewing direction}$ null space = projection center

크

・ロト ・部ト ・ヨト ・ヨト

31

Mapping of 3D-line $\mathcal L$ into image line ℓ'

$$\mathbf{l}'_{3\times 1} = \mathbf{Q}_{3\times 6} \mathbf{L}_{6\times 3}$$

with projection matrix for lines

$$\mathsf{Q} = \left[\begin{array}{c} \mathbf{M}_1^\mathsf{T} \\ \mathbf{M}_2^\mathsf{T} \\ \mathbf{M}_3^\mathsf{T} \end{array} \right] = \left[\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3; \ \mathbf{q}_4, \mathbf{q}_5, \mathbf{q}_6 \right]$$

 \mathbf{M}_i is (dual) *i*-th coordinate axis \mathbf{q}_1 to \mathbf{q}_3 = images of coordinate axes \mathbf{q}_4 to \mathbf{q}_6 = image so coordinate lines at infinity \mathbf{q}_6 = image of *horizon*!

universität**bonn**

 $\mathbf{A}_{l'} = \mathbf{P}^{\mathsf{T}}_{4\times 3} \mathbf{I}'_{3\times 1}$

projection line

projection planes

$$\mathbf{L}_{x'}_{6\times 1} = \overline{\mathbf{Q}}_{6\times 3}^{\mathsf{T}} \mathbf{x}'_{3\times 1}$$

with $\overline{\mathsf{Q}} = \mathsf{Q} D_6$

\rightarrow geometric constructions

3

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Construction	$\mathbf{c} = U(\mathbf{a})\mathbf{b} = V(\mathbf{b})\mathbf{a}$
$\ell = \chi \wedge y$	$\mathbf{l} = S(\mathbf{x})\mathbf{y} = -S(\mathbf{y})\mathbf{x}$
$\chi = \ell \cap m$	$\mathbf{x} = S(\mathbf{l})\mathbf{m} = -S(\mathbf{m})\mathbf{l}$
$\mathcal{L} = \mathcal{X} \land \mathcal{Y}$	$\mathbf{L} = \boldsymbol{\Pi}(\mathbf{X})\mathbf{Y} = -\boldsymbol{\Pi}(\mathbf{Y})\mathbf{X}$
$\mathcal{L}=\mathcal{A}\cap\mathcal{B}$	$\mathbf{L} = \overline{\Pi}(\mathbf{A})\mathbf{B} = -\overline{\Pi}(\mathbf{B})\mathbf{A}$
$\mathcal{A} = \mathcal{L} \wedge \mathcal{X}$	$\mathbf{A} = \Gamma(\mathbf{L})\mathbf{X} = \overline{\Pi}^{T}(\mathbf{X})\mathbf{L}$
$\mathcal{X} = \mathcal{L} \cap \mathcal{A}$	$\mathbf{X} = \overline{\Gamma}(\mathbf{L})\mathbf{A} = \boldsymbol{\Pi}^{T}(\mathbf{A})\mathbf{L}$
$\mathcal{X} _{arphi} \mathcal{\chi}'$	$\mathbf{x}' = P \; \mathbf{X} = (I_3 \otimes \mathbf{X}^T) \; vec(P^T)$
$\mathcal{L} \xrightarrow{\mathcal{I}} \mathcal{l}'$	$l' = Q \ \mathbf{L} = (I_3 \otimes \overline{\mathbf{L}}^T) \ vec(Q^T)$
$\chi' \mathop{ ightarrow}_{\mathscr{P}^+} \mathcal{L}_{\chi'}$	$\mathbf{L}_{x'} = \overline{Q}^{T} \mathbf{x}' = (\mathbf{x'}^{T} \otimes I_6) \operatorname{vec} \overline{Q}$
$\ell' \stackrel{\mathcal{I}^+}{{}_{\mathcal{P}^+}} \mathcal{A}_{\ell'}$	$\mathbf{A}_{l'} = P^T \ \mathbf{l}' = (\mathbf{l}'^T \otimes I_4) \ vecP$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

37

Uncertain Geometric Reasoning

Wolfgang Förstner Purdue, 20. March 2008

Uncertain Geometry for Image Analysis

Assumption: Usefulness of homogeneous representation Extension of representation by uncertainty

universität**bonr**

What is uncertainty of points in homogeneous coordinates? Equivalence classes (arbitrary scaling)

$$p(\mathbf{x}) \equiv p(\mathbf{y})$$
 iff $\mathbf{x} = \lambda \mathbf{y}$

projective points in \mathbb{P}^n are straight lines through O in \mathbb{R}^{n+1}

40

Uncertainty of a straight line? Uncertainty of a direction?

Uncertainty of direction in plane

v. Mises distribution, uncertainty of direction vector

Uncertain directions in ${\rm I\!R}^3$

Uncertain Geometry for Image Analysis

43

uncertain points ${\bf x}$ and lines l in the plane (2 d. o. f.) \rightarrow

$$\begin{bmatrix} \mathbf{x} \\ 3 \times 1, \frac{\Sigma_{xx}}{3 \times 3} \end{bmatrix} \begin{bmatrix} \mathbf{l} \\ 3 \times 1, \frac{\Sigma_{ll}}{3 \times 3} \end{bmatrix}$$

uncertain points **X**, lines **L** and planes **A** in space (3, 4, and 3 d. o. f.) $\rightarrow \begin{bmatrix} \mathbf{X} \\ 4 \times 1 \end{bmatrix}, \begin{bmatrix} \Sigma_{XX} \\ 4 \times 4 \end{bmatrix} \begin{bmatrix} \mathbf{L} \\ 6 \times 6 \end{bmatrix}, \begin{bmatrix} \mathbf{L} \\ 6 \times 6 \end{bmatrix} \begin{bmatrix} \mathbf{A} \\ 4 \times 1 \end{bmatrix}, \begin{bmatrix} \Sigma_{AA} \\ 4 \times 4 \end{bmatrix}$

uncertain projection parameters (11 d. o. f.)

$$\begin{bmatrix} \mathbf{p} & \Sigma_{pp} \\ 12 \times 1 & 12 \times 12 \end{bmatrix} \begin{bmatrix} \mathbf{q} & \Sigma_{qq} \\ 18 \times 1 & 18 \times 18 \end{bmatrix}$$

2

< □ > < □ > < □ > < □ > < □ > .

uncertain construction (bilinear)

$$\underline{\mathbf{c}} = \mathsf{U}(\underline{\mathbf{a}})\underline{\mathbf{b}} = \mathsf{V}(\underline{\mathbf{b}})\underline{\mathbf{a}}$$

then

$$\begin{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \begin{bmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{bmatrix} \end{bmatrix} \to [\mathbf{c}, \Sigma_{cc}]$$

 $\varSigma_{cc} = \mathsf{U}(\mathbf{a})\varSigma_{bb}\mathsf{U}^{\mathsf{T}}(\mathbf{a}) + \mathsf{V}(\mathbf{b})\varSigma_{ab}\mathsf{U}^{\mathsf{T}}(\mathbf{a}) + \mathsf{U}(\mathbf{a})\varSigma_{ba}\mathsf{V}^{\mathsf{T}}(\mathbf{b}) + \mathsf{V}(\mathbf{b})\varSigma_{aa}\mathsf{V}^{\mathsf{T}}(\mathbf{b})$

simple error propagation independent on distribution

Degree of approximation: relative bias in μ and σ^2 = directional uncertainty

universität**bon**

Test of x = y*Classical procedure* Difference:

$$\boldsymbol{d} = \boldsymbol{y} - \boldsymbol{x} \sim N(\boldsymbol{\mu}_d, \boldsymbol{\Sigma}_{dd}) = N(\boldsymbol{\mu}_y - \boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{xx} + \boldsymbol{\Sigma}_{yy})$$

Test of

$$H_0: \ \boldsymbol{\mu}_d = \mathbf{0} \qquad H_a: \ \boldsymbol{\mu}_d \neq \mathbf{0}$$

Test statistic

$$T = \boldsymbol{d}^{\mathsf{T}} \boldsymbol{\varSigma}_{dd}^{-1} \boldsymbol{d} \sim \chi_2^2$$

Problem: too complex for general geometric relations

Uncertain Geometry for Image Analysis

universität**bonn**

General procedure

'Difference': line l generated by ${f x}$ and ${f y}$ is not defined, thus l=0

 $\mathbf{d}|H_0 = \mathbf{x} \times \mathbf{y}|H_0 \sim N(\mathbf{0}, \Sigma_{\mathsf{dd}})$

$$\varSigma_{\mathsf{dd}} = \mathsf{S}(\boldsymbol{\mu}_x) \varSigma_{\mathsf{yy}} \mathsf{S}^\mathsf{T}(\boldsymbol{\mu}_x) + \mathsf{S}(\boldsymbol{\mu}_y) \varSigma_{\mathsf{xx}} \mathsf{S}^\mathsf{T}(\boldsymbol{\mu}_y)$$

Problems:

– μ_x and μ_y not known

– number of elements in ${\bf d}$ too large, depending on constraints Solution:

+ Use $\widehat{\mu}_x = \mathbf{x}$ and $\widehat{\mu}_y = \mathbf{y}$ as approximations

+ Select independent constraints (cf. above)

Discussion:

- + simple
- + fast
- + very good approximation if test is not rejected
- + approximate test statistic increases monotonically with rigorous one
- O Conditioning and Normalization necessary to reduce bias
- only approximation if test is rejected
- Normalization only of covariance matrix, no scaling necessary

- 1. determine the difference d, d, D or D (cf. tables 3, 2).
- 2. select r independent constraints
- 3. determine the covariance matrix Σ_{dd} of the r selected elements d of differences
- 4. determine the test statistic \boldsymbol{T}

$$T = \boldsymbol{d}^{\mathsf{T}} \boldsymbol{\Sigma}_{dd}^{+} \boldsymbol{d} \sim \chi_{r}^{2}$$

5. choose a significance number α compare T with the critical value $\chi^2_{r,\alpha}$. If $T > \chi^2_{r,\alpha}$ then reject hypothesis on relation universität

1	2	3	4	5
No.	2D-entities	relation	dof	test
1	χ, <i>y</i>	$\chi \equiv y$	2	$\mathbf{d} = S(\mathbf{x})\mathbf{y} = -S(\mathbf{y})\mathbf{x}$
2	x, l	$\chi \in \ell$	1	$d = \mathbf{x}^{T}\mathbf{l} = \mathbf{l}^{T}\mathbf{x}$
3	l, m	$l \equiv m$	2	$\mathbf{d} = S(\mathbf{l})\mathbf{m} = -S(\mathbf{m})\mathbf{l}$

Tabelle: shows 3 relationships between points and lines useful for 2D grouping, together with the degree of freedom and the essential part of the test statistic.

1	2	3	4	5
No.	3D-entities	relation	dof	test
4	\mathcal{X}, \mathcal{Y}	$\mathcal{X}\equiv \mathcal{Y}$	3	$\mathbf{D} = \Pi(\mathbf{X})\mathbf{Y} = -\Pi(\mathbf{Y})\mathbf{X}$
5	X, L	$\mathcal{X}\in\mathcal{L}$	2	$\mathbf{D} = \overline{\boldsymbol{\Pi}}^{T}(\mathbf{X})\mathbf{L} = \overline{\boldsymbol{\Gamma}}^{T}(\mathbf{L})\mathbf{X} \bullet$
6	\mathcal{X}, \mathcal{A}	$\mathcal{X}\in\mathcal{A}$	1	$d = \mathbf{X}^{T} \mathbf{A} = \mathbf{A}^{T} \mathbf{X} $
7	\mathcal{L}, \mathcal{M}	$\mathcal{L}\equiv\mathcal{M}$	4	$D = \overline{\Gamma}(\mathbf{L})\Gamma(\mathbf{M}) $
8		$\mathcal{L}\cap\mathcal{M} eq \emptyset$	1	$d = \overline{\mathbf{L}}^{T} \mathbf{M} = \overline{\mathbf{M}}^{T} \mathbf{L}$
9	\mathcal{L}, \mathcal{A}	$\mathcal{L}\in\mathcal{A}$	2	$\mathbf{D} = \boldsymbol{\Pi}^{T}(\mathbf{A})\mathbf{L} = \boldsymbol{\Gamma}^{T}(\mathbf{L})\mathbf{A}$
10	\mathcal{A}, \mathcal{B}	$\mathcal{A}\equiv\mathcal{B}$	3	$\mathbf{D} = \mathbf{\Pi}(\mathbf{A})\mathbf{B} = -\mathbf{\Pi}(\mathbf{B})\mathbf{A}$

Tabelle: shows 7 relationships between points, lines and planes useful for 3D grouping, together with the degree of freedom and the essential part of the test statistic.

Tabelle: shows 4 multi linear relationships together with the degree of freedom and the essential part of the test statistic.

Grouping

Intermediate step: Given: edge segment $s(\chi, y)$), point zUnknown: Does $z \in s$ hold?

Tests with three lines (l, m, n):

$$\mathbf{z}^{\mathsf{T}}\mathbf{l} = 0$$
 sign $\left(\frac{\mathbf{z}^{\mathsf{T}}\mathbf{m}}{|m_0|}\right) \neq$ sign $\left(\frac{\mathbf{z}^{\mathsf{T}}\mathbf{n}}{|n_0|}\right)$

Wolfgang Förstner Purdue, 20. March 2008

Uncertain Geometry for Image Analysis

Combined estimation of a 3D-line

Uncertain Geometry for Image Analysis

Plane $\mathbf{M} \wedge \mathbf{T}$ should be identical to plane $\mathbf{X} \wedge \mathbf{Y} \wedge \mathbf{Z}$ Line \mathbf{M} and point \mathbf{T} both depend on \mathbf{X} : $\Sigma_{MT} \neq 0$. If covaraince Σ_{MT} is neglected, then $D(\mathbf{M} \wedge \mathbf{T}) \neq D(\mathbf{X} \wedge \mathbf{Y} \wedge \mathbf{Z})$

3. Determine plane

 $\mathbf{B} = \mathbf{M} \wedge \mathbf{T}$

 $\mathbf{T} = \mathbf{L} \cap \mathbf{A}$

2. Determine fourth point

$$\mathbf{L} = \mathbf{X} \wedge \mathbf{Y} \qquad \mathbf{M} = \mathbf{X} \wedge \mathbf{Z}$$

Example: Given three 3D-points **X**, **Y** and **Z**, and a plane **A** 1. Determine lines

How can we determine the covariance matrix between different entities?

Construction of plane ${\bf B}={\bf M}\wedge {\bf T}$ with ${\bf M}={\bf X}\wedge {\bf Z}$ and ${\bf T}={\bf A}\cap ({\bf X}\wedge {\bf Y})$

Wolfgang Förstner Purdue, 20. March 2008

Uncertain Geometry for Image Analysis

General setup: Given:

- mutually independent vectors $(\underline{x}, \Sigma_{xx})$, $(\underline{y}, \Sigma_{yy})$ and $(\underline{z}, \Sigma_{zz})$
- linear functions

u = Ax + Bbv = Cx + Dc

The covariance matrix of \underline{u} and \underline{v} is given by:

 $\Sigma_{uv} = \mathsf{A}\Sigma_{xx}\mathsf{C}^\mathsf{T}$

Wolfgang Förstner Purdue, 20. March 2008

60

Proof: from

$$z = Et$$
with
$$t = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad E = \begin{bmatrix} A & B & 0 \\ C & 0 & D \end{bmatrix} \qquad z = \begin{bmatrix} u \\ v \end{bmatrix}$$

we obtain

$$\Sigma_{zz} = \mathbf{E} \Sigma_{tt} \mathbf{E}^{\mathsf{T}}$$

with

$$\Sigma_{zz} = \begin{bmatrix} \Sigma_{uu} & \Sigma_{uv} \\ \Sigma_{vu} & \Sigma_{vv} \end{bmatrix} = \begin{bmatrix} A & B & 0 \\ C & 0 & D \end{bmatrix} \begin{bmatrix} \Sigma_{xx} & 0 & 0 \\ 0 & \Sigma_{yy} & 0 \\ 0 & 0 & \Sigma_{zz} \end{bmatrix} \begin{bmatrix} A^{\mathsf{T}} & C^{\mathsf{T}} \\ B^{\mathsf{T}} & 0 \\ 0^{\mathsf{T}} & D^{\mathsf{T}} \end{bmatrix}$$

▶ < 문 ▶ < 문 ▶</p>

Э