Uncertain Geometry for Image Analysis

Wolfgang Förstner

University of Bonn
Purdue, 20. March 2008

Geometric Tasks in Image Analysis

Real Images with image features

Grupping of image features

Aggregating individual features to larger entie:

- Aggregating edge pixels to edges
- Concatenation of edges
- aggregating regions to larger ones
- aggregating symmetic parts

Example: Aggregating edge points

Given: edge points $x_{n}, n=1, \ldots, N$
Unknown: edge (y, z)

[^0]Method:

1. Determining fitting line \lceil
2. Determining starting and end point $y \in \mathcal{L}$ und $z \in \mathcal{L}$

$\circ x_{2}$

Quastions:

- Do all points belong to edge?
- How accurate is line?
- How accurate are end points?

Determination of 3D-structures from image structures

Reconstruction of 3D-objects from image information

- Surfaces
- Polyhedra
- Zylinders
- 3D-Lines

Example: Forward intersection with points and lines

Observed: Image points and lines in 4 images
Given: Orientation data of images 1 to 4
Unknown: 3D-Coordinates of point

Method:

1. Determination of approximate values
2. Optimal estimation

Quastions:

- Are Observations consistent?
- How accurate is result?
- What effect do errors in correspondence have?

Orientation of cameras

Determination of pose of camera at time of exposure

- Single cameras
- Multiple cameras
- Aerial images (50 to 20000)
- Video sequences ($\geq 1500 / \mathrm{min}$)
- with and without knowledge of calibration

Example: Orientation of camera from points and lines
Given: 3D-points and 3D-lines, streight line preserving mapping Observed: Image points and lines
Unknown: Orientation and Calibration of single camera

Method:

1. Check of observations
2. Determination of approximate values
3. Optimal Estimation

Questions (as above)

- Are observations consistent?
- How accurate is the result?
- What effect have correspondence errors onto the result?

Types of tasks

- Determination of geometric entities Intersection point, projection ray, ...
- Check of constraints Collinearity, Consistency, ...
- Estimation of parameters of lines, orientations, ...

under uncertainty

Types of uncertainty

- Unavoidable random deviations can be modeled stochastically, approximately Gaussian
- Calibration errors: systematic, model errors, small deterministic or stochastic
- Occlusions: Missing points, parts of edges, pars of regions systematic, model errors, large: may be modeled stochastically
- Correspondence errors, identification errors, detection errors glarge, not systematic: may be modeled stochastically
- Distribution of image features may be modeled stochastically

Representation of Geometry

Geometric image features

Simple entities:

- distinct points, positions, ...
- straight image edges, -lines
- straight edge segments, line segments

Representation in homogeneous coordinates distinct points, postions, ...

$$
\chi: \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=w\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
x_{h}
\end{array}\right]
$$

with Euclidean coordinates
straight edges

$$
\ell: \quad \mathbf{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{c}
\cos \phi \\
\sin \phi \\
-s
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{l}_{h} \\
l_{0}
\end{array}\right]
$$

with normal $[\cos \phi, \sin \phi]^{\top}$ and distance s to origin
straight edge segment, line segment

$$
s: \quad(u, v) \leftrightarrow(k, m, n)
$$

starting and end point u und v
or
line \mathcal{K} and limiting lines m und n

Geometric entities in 3D

Simple entities:

- Distinct points, corner, nodes, ...
- Straight lines
- Planes
- Straight edge segments, line segments

Representation in homogeneous Coordinates
Distinct points, corner, nodes, ...

$$
X: \quad \mathbf{X}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{c}
U \\
V \\
W \\
T
\end{array}\right]=T\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{X}_{0} \\
X_{h}
\end{array}\right]
$$

Planes
$\mathcal{A}: \quad \mathbf{A}=\left[\begin{array}{c}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{array}\right]=\left[\begin{array}{c}A \\ B \\ C \\ D\end{array}\right]=\sqrt{A^{2}+B^{2}+C^{2}}\left[\begin{array}{c}N \\ -S\end{array}\right]=\left[\begin{array}{c}\boldsymbol{A}_{h} \\ A_{0}\end{array}\right]$
with normal N and distance S from origin \times
straight lines: Plücker-Coordinates

$$
\mathcal{L}: \underset{6 \times 1}{\mathbf{L}}=\left[\begin{array}{c}
L_{1} \\
L_{2} \\
L_{3} \\
L_{4} \\
L_{5} \\
L_{6}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{L}_{h} \\
\boldsymbol{L}_{0}
\end{array}\right]
$$

linear as join of two points

$$
\begin{gathered}
\mathcal{X}\left(\left[\begin{array}{c}
\boldsymbol{X} \\
1
\end{array}\right]\right) \quad \mathcal{Y}\left(\left[\begin{array}{c}
\boldsymbol{Y} \\
1
\end{array}\right]\right) \\
\mathcal{L}=\mathcal{X} \wedge \mathcal{Y}: \quad \underset{6 \times 1}{\mathbf{L}}=\left[\begin{array}{c}
\boldsymbol{Y}-\boldsymbol{X} \\
\boldsymbol{X} \times \boldsymbol{Y}
\end{array}\right]=\underset{6 \times 4}{\boldsymbol{X})} \underset{4 \times 1}{\mathbf{Y}}=-\underset{6 \times 4}{ }(\mathbf{Y}) \underset{4 \times 1}{\mathbf{X}}
\end{gathered}
$$

with 6×4-matrix $\Pi(\mathbf{X})$, depending on \mathbf{X}

Pi-Matrix

$$
\Pi(\mathbf{X})=\left[\begin{array}{cccc}
X_{4} & 0 & 0 & -X_{1} \\
0 & X_{4} & 0 & -X_{2} \\
0 & 0 & X_{4} & -X_{3} \\
0 & -X_{3} & X_{2} & 0 \\
X_{3} & 0 & -X_{1} & 0 \\
-X_{2} & X_{1} & 0 & 0
\end{array}\right]
$$

Plückermatrix

$$
\Gamma(\mathbf{L})=\left[\begin{array}{cccc}
0 & L_{6} & -L_{5} & -L_{1} \\
-L_{6} & 0 & L_{4} & -L_{2} \\
L_{5} & -L_{4} & 0 & -L_{3} \\
L_{1} & L_{2} & L_{3} & 0
\end{array}\right] \quad \Gamma(X \wedge \mathscr{Y})=\mathbf{X} \mathbf{Y}^{\top}-\mathbf{Y} \mathbf{X}^{\top}
$$

linear as intersection of two planes

$$
\mathcal{L}=\mathcal{A} \cap \mathcal{B}: \quad \mathbf{L}=\bar{\Pi}(\mathbf{A}) \mathbf{B}=-\bar{\Pi}(\mathbf{B}) \mathbf{A}
$$

with 6×4-matrix $\bar{\pi}(\mathbf{X})$, depending on \mathbf{X}

$$
\bar{\Pi}(\mathbf{A})=D_{6} \Pi(\mathbf{A})
$$

Matrix for dualling lines (exchanging first and second triplets of rows)

$$
D_{6}=\left[\begin{array}{cc}
\mathbf{0} & \boldsymbol{I}_{3} \\
\boldsymbol{I}_{3} & \mathbf{0} \\
6 \times 6
\end{array}\right]
$$

dual Plücker matrix
$\bar{\Gamma}(\mathbf{L})=\left[\begin{array}{cccc}0 & L_{3} & -L_{2} & -L_{4} \\ -L_{3} & 0 & L_{1} & -L_{5} \\ L_{2} & -L_{1} & 0 & -L_{6} \\ L_{4} & L_{5} & L_{6} & 0\end{array}\right]$
$\bar{\Gamma}(\mathscr{A} \cap \mathcal{B})=\mathbf{A} \mathbf{B}^{\top}-\mathbf{B} \mathbf{A}^{\top}$

- Straight lines segments

$$
\mathcal{S}(\mathcal{U}, \mathcal{V}) \leftrightarrow \mathcal{S}(\mathscr{M}, \mathcal{B}, \mathcal{C})
$$

starting and end point \mathcal{U} und \mathcal{V}
or
line \mathcal{M} and limiting planes \mathcal{B} and \mathcal{C}

Projective Mappings

straight line preserving mappings: projectivities, homographies straight line preserving planar mapping

$$
\underset{3 \times 1}{\mathbf{x}^{\prime}}=\underset{3 \times 3}{\boldsymbol{H}} \underset{3 \times 1}{\mathbf{x}}
$$

8 degrees of freedom: translation (2), rotation (1), scale (1), affinity (2), projektivity (2)

straight line preserving spatial mapping

$$
\underset{4 \times 1}{\mathbf{X}^{\prime}}=\underset{4 \times 4}{\boldsymbol{H}} \underset{4 \times 1}{\mathbf{X}}
$$

15 degrees of freedom: translation (3), rotation (3), scale (3), affinity (3), projektivity (3)

Special properties of homogeneous entities

distance to origin:
$d_{x O}=\frac{\left|x_{0}\right|}{\left|x_{h}\right|} \quad d_{l O}=\frac{\left|l_{0}\right|}{\left|\boldsymbol{l}_{h}\right|} \quad d_{X O}=\frac{\left|\boldsymbol{X}_{0}\right|}{\left|X_{h}\right|} \quad d_{L O}=\frac{\left|\boldsymbol{L}_{0}\right|}{\left|\boldsymbol{L}_{h}\right|} \quad d_{A O}=\frac{\left|\boldsymbol{A}_{0}\right|}{\left|A_{h}\right|}$
entities at infinity: if homogeneous part is 0
2D:

$$
x_{\infty}:\left[\begin{array}{c}
x_{0} \\
0
\end{array}\right] \quad l_{\infty}:\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

3D:

$$
X_{\infty}:\left[\begin{array}{c}
\boldsymbol{X}_{0} \\
0
\end{array}\right] \quad \mathcal{L}_{\infty}:\left[\begin{array}{c}
\boldsymbol{L}_{0} \\
0
\end{array}\right] \quad \mathcal{A}_{\infty}: \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Geometric image analysis

Projection of 3D-object-point X to 2D-image points:

$$
\underset{3 \times 1}{\mathbf{x}^{\prime}}=\underset{3 \times 4}{\mathbf{P}} \underset{3 \times 1}{\mathbf{X}}
$$

with projection matrix

$$
\underset{3 \times 4}{\mathrm{P}}=\left[p_{i j}\right]=\left[\begin{array}{l}
\mathbf{A}^{\top} \\
\mathbf{B}^{\top} \\
\mathbf{C}^{\top}
\end{array}\right]=\left[\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right]
$$

A are planes of coordinate system of camera S_{c}
$\mathbf{p}_{i}=$ images of points at infinity of axes
$\mathbf{p}_{4}=$ image of origin
$\left[p_{31}, p_{32}, p_{33}\right]^{\top}=$ viewing direction
null space $=$ projection center

Mapping of 3D-line \mathcal{L} into image line ${ }^{\prime}$

$$
\underset{3 \times 1}{\mathrm{l}^{\prime}}=\underset{3 \times 6}{\mathrm{Q}} \underset{6 \times 1}{\mathbf{L}}
$$

with projection matrix for lines

$$
\mathbf{Q}=\left[\begin{array}{l}
\mathbf{M}_{1}^{\top} \\
\mathbf{M}_{2}^{\top} \\
\mathbf{M}_{3}^{\top}
\end{array}\right]=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3} ; \mathbf{q}_{4}, \mathbf{q}_{5}, \mathbf{q}_{6}\right]
$$

\mathbf{M}_{i} is (dual) i-th coordinate axis
\mathbf{q}_{1} to $\mathbf{q}_{3}=$ images of coordinate axes
\mathbf{q}_{4} to $\mathbf{q}_{6}=$ image so coordinate lines at infinity
$\mathbf{q}_{6}=$ image of horizon!

Back projection of points and lines

projection planes

$$
\underset{4 \times 1}{\mathbf{A}_{l^{\prime}}}=\underset{4 \times 3}{\mathrm{P}^{\top}} \mathbf{l}_{3 \times 1}^{\mathbf{l}^{\prime}}
$$

projection line

$$
\underset{6 \times 1}{\mathbf{L}_{x^{\prime}}}=\underset{6 \times 3}{\overline{\mathbf{Q}}^{\top}} \underset{3 \times 1}{\mathbf{x}^{\prime}}
$$

with $\bar{Q}=Q D_{6}$
\rightarrow geometric constructions

Construction	$\mathbf{c}=\mathrm{U}(\mathbf{a}) \mathbf{b}=\mathrm{V}(\mathbf{b}) \mathbf{a}$
$\begin{aligned} & \mathcal{l}=\chi \wedge y \\ & \chi=\mathfrak{l} \cap m \end{aligned}$	$\begin{gathered} \mathbf{l}=\mathrm{S}(\mathbf{x}) \mathbf{y}=-\mathrm{S}(\mathbf{y}) \mathbf{x} \\ \mathrm{x}=\mathrm{S}(\mathbf{l}) \mathbf{m}=-\mathrm{S}(\mathbf{m}) \mathbf{l} \end{gathered}$
$\begin{aligned} \mathcal{L} & =\mathcal{X} \wedge \mathcal{Y} \\ \mathcal{L} & =\mathcal{A} \cap \mathcal{B} \\ \mathcal{A} & =\mathcal{L} \wedge \mathcal{X} \\ \mathcal{X} & =\mathcal{L} \cap \mathcal{A} \end{aligned}$	
$\begin{gathered} X \underset{\mathcal{P}}{\rightarrow} \mathcal{X}^{\prime} \\ \mathcal{L} \underset{\mathcal{D}}{\rightarrow} I^{\prime} \end{gathered}$	$\begin{aligned} \mathbf{x}^{\prime} & =\mathrm{P} \mathbf{X}=\left(\mathrm{I}_{3} \otimes \mathbf{X}^{\top}\right) \operatorname{vec}\left(\mathrm{P}^{\top}\right) \\ \mathbf{l}^{\prime} & =\mathrm{Q} \mathbf{L}=\left(\mathrm{I}_{3} \otimes \overline{\mathbf{L}}^{\top}\right) \operatorname{vec}\left(\mathrm{Q}^{\top}\right) \end{aligned}$
$\begin{aligned} & X^{\prime} \xrightarrow[\mathcal{P}^{+}]{\overrightarrow{\mathcal{L}_{X^{\prime}}}} \\ & \boldsymbol{I}^{\prime} \underset{\mathcal{P}^{+}}{\rightarrow} \mathcal{A}_{l^{\prime}} \\ & \hline \hline \end{aligned}$	$\begin{aligned} \mathbf{L}_{x^{\prime}}=\overline{\mathrm{Q}}^{\top} \mathbf{x}^{\prime} & =\left(\mathbf{x}^{\prime \top} \otimes \mathbf{I}_{6}\right) \operatorname{vec} \overline{\mathrm{Q}} \\ \mathbf{A}_{l^{\prime}}=\mathrm{P}^{\top} \mathbf{l}^{\prime} & =\left(\mathbf{l}^{\top} \otimes \mathbf{I}_{4}\right) \operatorname{vec} \end{aligned}$

Uncertain Geometric Reasoning

Assumption:
 Usefulness of homogeneous representation Extension of representation by uncertainty

Uncertainty of Homogeneous Vectors

Principle:

Uncertainty of Geometric Entities

What is uncertainty of points in homogeneous coordinates?
Equivalence classes (arbitrary scaling)

$$
p(\mathbf{x}) \equiv p(\mathbf{y}) \quad \text { iff } \mathbf{x}=\lambda \mathbf{y}
$$

projective points in \mathbb{P}^{n} are straight lines through O in $\mathbb{R}^{\mathrm{n}+1}$

Uncertainty of a straight line?
 Uncertainty of a direction?

Uncertainty of direction in plane
v. Mises distribution, uncertainty of direction vector

Uncertain directions in \mathbb{R}^{3}

Representation of uncertain geometric entities

uncertain points \mathbf{x} and lines \mathbf{l} in the plane ($2 \mathrm{~d} . \mathrm{o}$. f.) \rightarrow

$$
\left[\underset{3 \times 1}{\mathbf{x}}, \sum_{3 \times 3}\right] \quad\left[\underset{3 \times 1}{1}, \sum_{3 \times 3} \Sigma_{l l}\right]
$$

uncertain points \mathbf{X}, lines \mathbf{L} and planes \mathbf{A} in space (3, 4, and 3 d .
o. f.) \rightarrow

$$
\left[\underset{4 \times 1}{\mathbf{X}}, \underset{4 \times 4}{\Sigma_{X X}}\right] \quad\left[\underset{6 \times 1}{\mathbf{L}}, \underset{6 \times 6}{\Sigma_{L L}}\right] \quad\left[\underset{4 \times 1}{\mathbf{A}}, \underset{4 \times 4}{\Sigma_{A A}}\right]
$$

uncertain projection parameters (11 d. o. f.)

$$
\left[{\underset{12 \times 1}{ }}_{\left.\mathbf{p}_{12 \times 12}, \Sigma_{p p}\right]}^{\left[\underset{18 \times 1}{\mathbf{q}}, \underset{18 \times 18}{\Sigma_{q q}}\right]}\right.
$$

Construction of Uncertain Elements

uncertain construction (bilinear)

$$
\underline{\mathbf{c}}=\mathrm{U}(\underline{\mathbf{a}}) \underline{\mathbf{b}}=\mathrm{V}(\underline{\mathbf{b}}) \underline{\mathbf{a}}
$$

$$
\begin{aligned}
& \text { then } \\
& \qquad\left[\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{a a} & \Sigma_{a b} \\
\Sigma_{b a} & \Sigma_{b b}
\end{array}\right]\right] \rightarrow\left[\mathbf{c}, \Sigma_{c c}\right] \\
& \Sigma_{c c}=\mathrm{U}(\mathbf{a}) \Sigma_{b b} \mathrm{U}^{\top}(\mathbf{a})+\mathrm{V}(\mathbf{b}) \Sigma_{a b} \mathrm{U}^{\top}(\mathbf{a})+\mathrm{U}(\mathbf{a}) \Sigma_{b a} \mathrm{~V}^{\top}(\mathbf{b})+\mathrm{V}(\mathbf{b}) \Sigma_{a a} \mathrm{~V}^{\top}(\mathbf{b})
\end{aligned}
$$

simple error propagation independent on distribution
Degree of approximation: relative bias in μ and $\sigma^{2}=$ directional uncertainty

Example: Testing Identity of Two

Test of $\boldsymbol{x}=\boldsymbol{y}$
Classical procedure
Difference:

$$
\boldsymbol{d}=\boldsymbol{y}-\boldsymbol{x} \sim N\left(\boldsymbol{\mu}_{d}, \Sigma_{d d}\right)=N\left(\boldsymbol{\mu}_{y}-\boldsymbol{\mu}_{x}, \Sigma_{x x}+\Sigma_{y y}\right)
$$

Test of

$$
H_{0}: \boldsymbol{\mu}_{d}=\mathbf{0} \quad H_{a}: \boldsymbol{\mu}_{d} \neq \mathbf{0}
$$

Test statistic

$$
T=\boldsymbol{d}^{\top} \Sigma_{d d}^{-1} \boldsymbol{d} \sim \chi_{2}^{2}
$$

Problem: too complex for general geometric relations

General procedure
'Difference': line \mathbf{l} generated by x and y is not defined, thus $\mathrm{l}=\mathbf{0}$

$$
\begin{gathered}
\mathbf{d}\left|H_{0}=\mathbf{x} \times \mathbf{y}\right| H_{0} \sim N\left(\mathbf{0}, \Sigma_{\mathrm{dd}}\right) \\
\Sigma_{\mathrm{dd}}=\mathrm{S}\left(\boldsymbol{\mu}_{x}\right) \Sigma_{\mathrm{yy}} \mathrm{~S}^{\top}\left(\boldsymbol{\mu}_{x}\right)+\mathrm{S}\left(\boldsymbol{\mu}_{y}\right) \Sigma_{x x} \mathrm{~S}^{\top}\left(\boldsymbol{\mu}_{y}\right)
\end{gathered}
$$

Problems:

- $\boldsymbol{\mu}_{x}$ and $\boldsymbol{\mu}_{y}$ not known
- number of elements in d too large, depending on constraints

Solution:

+ Use $\widehat{\boldsymbol{\mu}}_{x}=\mathbf{x}$ and $\widehat{\boldsymbol{\mu}}_{y}=\mathbf{y}$ as approximations
+ Select independent constraints (cf. above)

Discussion:

+ simple
+ fast
+ very good approximation if test is not rejected
+ approximate test statistic increases monotonically with rigorous one
0 Conditioning and Normalization necessary to reduce bias
- only approximation if test is rejected

Normalization only of covariance matrix, no scaling necessary

Procedure for Testing Geometric Entities

1. determine the difference $d, \mathbf{d}, \mathbf{D}$ or \mathbf{D} (cf. tables 3, 2).
2. select r independent constraints
3. determine the covariance matrix $\Sigma_{d d}$ of the r selected elements d of differences
4. determine the test statistic T

$$
T=\boldsymbol{d}^{\top} \Sigma_{d d}^{+} \boldsymbol{d} \sim \chi_{r}^{2}
$$

5. choose a significance number α compare T with the critical value $\chi_{r, \alpha}^{2}$. If $T>\chi_{r, \alpha}^{2}$ then reject hypothesis on relation

1	2	3	4	5
No.	2D-entities	relation	dof	test
1	χ, y	$\chi \equiv y$	2	$\mathbf{d}=\mathrm{S}(\mathbf{x}) \mathbf{y}=-\mathrm{S}(\mathbf{y}) \mathbf{x}$
2	χ, l	$\chi \in l$	1	$d=\mathbf{x}^{\top} \mathbf{l}=\mathbf{l}^{\top} \mathbf{x}$
3	l, m	$\swarrow \equiv m$	2	$\mathbf{d}=\mathrm{S}(\mathbf{l}) \mathbf{m}=-\mathrm{S}(\mathbf{m}) \mathbf{l}$

Tabelle: shows 3 relationships between points and lines useful for 2D grouping, together with the degree of freedom and the essential part of the test statistic.

1	2	3	4	5
No.	3D-entities	relation	dof	test
4	\mathcal{X}, \mathcal{Y}	$\mathcal{X} \equiv \mathcal{Y}$	3	$\mathbf{D}=\Pi(\mathbf{X}) \mathbf{Y}=-\Pi(\mathbf{Y}) \mathbf{X}$
5	\mathcal{X}, \mathcal{L}	$X \in \mathcal{L}$	2	$\mathbf{D}=\bar{\Pi}^{\top}(\mathbf{X}) \mathbf{L}=\bar{\Gamma}^{\top}(\mathbf{L}) \mathbf{X}$
6	\mathcal{X}, \mathcal{A}	$\mathcal{X} \in \mathcal{A}$	1	$d=\mathbf{X}^{\top} \mathbf{A}=\mathbf{A}^{\top} \mathbf{X}$
7	\mathcal{L}, \mathcal{M}	$\mathcal{L} \equiv \mathcal{M}$	4	$\mathrm{D}=\bar{\Gamma}(\mathbf{L}) \Gamma(\mathbf{M})$
8		$\mathcal{L} \cap \mathcal{M} \neq \emptyset$	1	$d=\overline{\mathbf{L}}^{\top} \mathbf{M}=\overline{\mathbf{M}}^{\top} \mathbf{L}$
9	\mathcal{L}, \mathcal{A}	$\mathcal{L} \in \mathcal{A}$	2	$\mathbf{D}=\Pi^{\top}(\mathbf{A}) \mathbf{L}=\Gamma^{\top}(\mathbf{L}) \mathbf{A}$
10	\mathcal{A}, \mathcal{B}	$\mathcal{A} \equiv \mathcal{B}$	3	$\mathbf{D}=\Pi(\mathbf{A}) \mathbf{B}=-\Pi(\mathbf{B}) \mathbf{A}$

Tabelle: shows 7 relationships between points, lines and planes useful for 3D grouping, together with the degree of freedom and the essential part of the test statistic.

1	2	3	4	5
No.	entities	relation	dof	test
1	$x^{\prime}, \mathcal{P}(\mathrm{P}), \mathcal{X}$	$\mathcal{X}^{\prime} \equiv \mathcal{P}(X)$	2	$\mathrm{~d}=\mathrm{S}\left(\mathrm{x}^{\prime}\right) \mathrm{PX}=\mathbf{0}$
2	$\iota^{\prime}, \mathcal{P}(\mathrm{P}), \mathcal{L}$	$\iota^{\prime} \equiv \mathcal{P}(\mathcal{L})$	2	$\mathbf{D}=\Gamma(\mathbf{L}) \mathrm{P}^{\top} \mathbf{l}^{\prime}=\mathbf{0}$
3	$X, \mathcal{Y}, \mathcal{Z}, \mathcal{T}$	coplanar	1	$d=\|\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T}\|=0$
4	$\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$	intersect	1	$d=\|\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\|=0$

Tabelle: shows 4 multi linear relationships together with the degree of freedom and the essential part of the test statistic.

Examples

Grouping

Intermediate step:
Given: edge segment $s(\chi, y))$, point z
Unknown: Does $z \in s$ hold?

Tests with three lines (\mathcal{L}, m, n) :

$$
\mathbf{z}^{\top} \mathbf{l}=0 \quad \operatorname{sign}\left(\frac{\mathbf{z}^{\top} \mathbf{m}}{\left|m_{0}\right|}\right) \neq \operatorname{sign}\left(\frac{\mathbf{z}^{\top} \mathbf{n}}{\left|n_{0}\right|}\right)
$$

Combined estimation of a 3D-line

$$
\begin{aligned}
& {\left[\begin{array}{c}
\overline{\mathbf{L}_{11^{\prime}}^{\top}} \\
\Pi^{\top}\left(\mathbf{A}_{52^{\prime}}^{\top}\right) \\
\overline{\mathbf{L}_{23^{\prime}}^{\top}} \\
\Pi^{\top}\left(\mathbf{A}_{54^{\prime}}^{\top}\right)
\end{array}\right] \mathbf{L}_{5}=\left[\begin{array}{c}
\mathbf{x}_{11}^{\prime \top} \mathrm{Q}_{1} \\
\Pi^{\top}\left(\mathrm{P}_{2}^{\top} \mathbf{1}_{52}^{\prime}\right) \\
\mathbf{x}_{23}^{\prime} \mathrm{Q}_{3} \\
\Pi^{\top}\left(\mathrm{P}_{4}^{\top} \mathbf{1}_{54}^{\prime}\right)
\end{array}\right] \mathbf{L}_{5}=\mathrm{A} \mathbf{L}_{5}=\mathbf{w}=\mathbf{0} \mathrm{SVD}} \\
& \text { of } \mathrm{A} \rightarrow \widehat{\mathbf{L}_{5}}
\end{aligned}
$$

Results and Outlook

Result

- Integration of geometry and uncertainty
- Homogeneous representation suited
- Software SUGR (statistically uncertain geometric reasoning) in JAVA available

Use

- Grouping of image and space features
- Reconstruction from images
- Reconstruction from laser range data

Open problems

- Limitations of approach
- Quality of reasoning for ling chains
- Integration of other types of uncertainties (Correspondence, grouping, ...)

How can we determine the covariance matrix between different entities?

Example: Given three 3D-points \mathbf{X}, \mathbf{Y} and \mathbf{Z}, and a plane \mathbf{A}

1. Determine lines

$$
\mathbf{L}=\mathbf{X} \wedge \mathbf{Y} \quad \mathbf{M}=\mathbf{X} \wedge \mathbf{Z}
$$

2. Determine fourth point

$$
\mathbf{T}=\mathbf{L} \cap \mathbf{A}
$$

3. Determine plane

$$
\mathbf{B}=\mathbf{M} \wedge \mathbf{T}
$$

Plane $\mathbf{M} \wedge \mathbf{T}$ should be identical to plane $\mathbf{X} \wedge \mathbf{Y} \wedge \mathbf{Z}$
Line \mathbf{M} and point \mathbf{T} both depend on $\mathbf{X}: \Sigma_{M T} \neq 0$.
If covaraince $\Sigma_{M T}$ is neglected, then $D(\mathbf{M} \wedge \mathbf{T}) \neq D(\mathbf{X} \wedge \mathbf{Y} \wedge \mathbf{Z})$

Construction of plane $\mathbf{B}=\mathbf{M} \wedge \mathbf{T}$ with $\mathbf{M}=\mathbf{X} \wedge \mathbf{Z}$ and $\mathbf{T}=\mathbf{A} \cap(\mathbf{X} \wedge \mathbf{Y})$

General setup:
Given:

- mutually independent vectors $\left(\underline{\boldsymbol{x}}, \Sigma_{x x}\right),\left(\underline{\boldsymbol{y}}, \Sigma_{y y}\right)$ and $\left(\underline{\boldsymbol{z}}, \Sigma_{z z}\right)$
- linear functions

$$
\begin{aligned}
& u=A x+B b \\
& v=C x+D c
\end{aligned}
$$

The covariance matrix of $\underline{\boldsymbol{u}}$ and $\underline{\boldsymbol{v}}$ is given by:

$$
\Sigma_{u v}=A \Sigma_{x x} C^{\top}
$$

Proof:
from

$$
z=E t
$$

with

$$
t=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad E=\left[\begin{array}{ccc}
A & B & 0 \\
C & 0 & D
\end{array}\right] \quad z=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

we obtain

$$
\Sigma_{z z}=E \Sigma_{t t} E^{\top}
$$

with

$$
\Sigma_{z z}=\left[\begin{array}{cc}
\Sigma_{u u} & \Sigma_{u v} \\
\Sigma_{v u} & \Sigma_{v v}
\end{array}\right]=\left[\begin{array}{ccc}
A & B & 0 \\
C & 0 & D
\end{array}\right]\left[\begin{array}{ccc}
\Sigma_{x x} & 0 & 0 \\
0 & \Sigma_{y y} & 0 \\
0 & 0 & \Sigma_{z z}
\end{array}\right]\left[\begin{array}{cc}
A^{\top} & C^{\top} \\
B^{\top} & 0 \\
0^{\top} & D^{\top}
\end{array}\right.
$$

[^0]: x_{2}

