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ABSTRACT
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1 Introduction

Adverse birth outcomes have been found to result in large economic costs, in the form of both

direct medical costs and long-term developmental consequences. Since better prenatal care during

pregnancy is known to have a positive effect on birth outcomes, it is not surprising that the

public-health community has focused efforts on improved prenatal care (e.g., through smoking

cessation and better nutrition). Birthweight has served as a leading indicator of infant health,

with “low birthweight” (LBW) infants classified as those that weigh less than 2500 grams at birth.

Observable measures of poor prenatal care, such as smoking, have been found to have strong

negative associations with birthweight. For instance, according to a report by the Surgeon General,

mothers who smoke during pregnancy have babies that, on average, weigh 250 grams less (Centers

for Disease Control and Prevention (2001)).

The direct medical costs of low birthweight are quite large. Based upon hospital-discharge

data from New York and New Jersey, Almond et. al. (2004) report that the hospital costs for

newborns peaks at around $150,000 (in 2000 dollars) for infants that weigh 800 grams; the costs

remain quite high for all “low birthweight” outcomes, with an average cost of around $15,000 for

infants that weigh 2000 grams. The infant-mortality rate also increases at lower birthweights.

Research by economists has also focused on the long-term effects of low birthweight on cog-

nitive development, educational outcomes, and labor-market outcomes. LBW babies have develop-

mental problems in cognition, attention, and neuromotor functioning that persist until adolescence

(Hack et. al. (1995)). LBW babies are more likely to delay entry into kindergarten, repeat a grade

in school, and attend special-education classes (Corman (1995); Corman and Chaikind (1998)).

LBW babies are also more likely to have inferior labor-market outcomes, being more likely to be

unemployed and earn lower wages (Behrman and Rosenzweig (2004); Case et. al. (2005); Currie

and Hyson (1999)).

An enormous difficulty in evaluating initiatives aimed at improving birth outcomes is to

accurately estimate the causal effects of prenatal activities on these birth outcomes. Unobserved

heterogeneity among childbearing women makes it difficult to isolate the causal effects of smoking

and prenatal care on birth outcomes (such as birthweight). Whether or not a mother smokes, for

instance, is likely to be correlated with unobserved characteristics of the mother. To deal with

this difficulty, various studies have used an instrumental-variable methodology in order to estimate

the effects of smoking (Evans and Ringel (1999); Permutt and Hebel (1989)) and prenatal care

(Currie and Gruber (1996); Evans and Lien (2005); Joyce (1999)) on birth outcomes. Another

approach has been to utilize panel data (i.e., several births for each mother) in order to identify

these effects from changes in prenatal behavior or maternal characteristics between pregnancies
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(Abrevaya (2005); Currie and Moretti (2002); Rosenzweig and Wolpin (1991); Royer (2004)).

A potential limitation of these studies is that they have focused upon estimating how pre-

natal behaviors and maternal characteristics affect average birthweight. In contrast, the costs

associated with birthweight have been found to exist primarily at the low end of the birthweight

distribution, with the costs increasing significantly at the very low end. This paper focuses upon es-

timation of the prenatal effects on the entire birthweight distribution. Using state-level (maternally

linked) panel data on births to control for unobserved heterogeneity, we address a major shortcom-

ing of previous work on the association between prenatal care and the birthweight distribution.

In particular, Abrevaya (2001) uses cross-sectional federal natality data and finds that various ob-

servables (such as smoking) have significantly larger effects at lower quantiles of the birthweight

distribution; unfortunately, one can not interpret these “effects” as causal since the estimation has

a purely reduced-form structure that does not account for unobserved heterogeneity.1

This paper combines the panel-data methodology of previous studies with a focus upon es-

timation of effects on the quantiles of birthweight. The outline of the paper is as follows. Section 2

details the quantile-estimation approach, which is motivated by the “correlated random effects

model” of Chamberlain (1982, 1984). In particular, we focus upon a notion of marginal effects

upon conditional quantiles that is analogous to the standard notion of marginal effects upon the

conditional expectation. These effects explicitly control for unobserved heterogeneity by allowing

the “mother random effect” to be related to observables. This approach is an important method-

ological contribution to the literature, as it provides a general framework with which empirical

researchers can apply quantile regression to panel data. Section 3 describes the maternally-linked

birth panel data for Washington and Arizona that are used in this study. Section 4 reports the

main empirical results of the paper. There are some interesting differences between the panel-data

and cross-sectional results. For example, the results from panel-data estimation, which controls for

unobserved heterogeneity, indicate that the negative effects of smoking on birthweight are signif-

icantly lower (in magnitude) across all quantiles than indicated by the cross-sectional estimates.

Finally, Section 5 concludes.

2 Quantile estimation for two-birth panel data

Despite the widespread use of both panel-data methodology and quantile-regression methodology,

there has been surprisingly little work at the intersection of these two methodologies. As discussed

in this section, the most likely explanation is the difficulty in extending differencing methods to

quantiles. The outline of this section is as follows. Section 2.1 briefly reviews the fixed effects
1Koenker and Hallock (2001) report similar results from an application based upon Abrevaya (2001). See also

Chernozhukov (2005), who has considered estimation at extremely low quantiles of the birthweight distribution.
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and correlated random effects models for conditional expectations. Building upon the correlated

random effects framework of Section 2.1, Section 2.2 extends the notion of marginal effects (and

their estimation) to conditional quantile models. Section 2.3 discusses previous related studies.

2.1 Review of conditional expectation models with panel data

Suppose that the data source contains information on exactly two births for a large sample of

mothers. A standard linear panel-data model for such a situation would be

ymb = x′
mbβ + cm + umb (b = 1, 2; m = 1, . . . ,M), (1)

where m indexes mothers, b indexes births, y denotes a birth outcome (e.g., birthweight), x denotes

a vector of observables, c denotes the (unobservable) “mother effect,” and u denotes a birth-specific

disturbance. To simplify notation somewhat, let xm ≡ (xm1, xm2) denote the covariate values from

both births of a given mother.

From the basic model in (1), several different types of panel-data models arise from the

assumptions concerning the unobservable cm. In the “pure” random-effects version of (1), cm is

assumed to be uncorrelated with xm. This assumption is implausible in the context of the empirical

application being considered, so attention is focused upon two methods that allow for dependence

between cm and xm: (1) the fixed-effects model and (2) the correlated random-effects model.

Fixed-effects model: The fixed-effects version of (1) allows correlation between cm and xm in

a completely unspecified manner. For the fixed-effects model, note that the “meaning” of the

parameter vector β is given by

β =
∂E(ymb|xm, cm)

∂xmb
(2)

under the following assumption:

(A1) E(um1|xm, cm) = E(um2|xm, cm) = 0 ∀m. (3)

It is well known that, under (A1), β can be consistently estimated by a first-difference regression

(i.e., regressing ym2 − ym1 on xm2 − xm1). The reason that this strategy works for the conditional

expectation hinges critically upon the fact that an expectation is a linear operator, so that

E(ym2 − ym1|xm) = E(ym2|xm) − E(ym1|xm) = (xm2 − xm1)′β. (4)

For conditional quantiles, a simple differencing strategy is infeasible since quantiles are not linear

operators — that is, in general, Qτ (ym2 − ym1|xm) �= Qτ (ym2|xm) − Qτ (ym1|xm), where Qτ (·|·)
denotes the τ -th conditional quantile function for τ ∈ (0, 1). This inherent difficulty has been
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recognized by others and is summarized nicely in a recent survey on quantile-estimation methods

by Koenker and Hallock (2000):

Quantiles of convolutions of random variables are rather intractable objects, and pre-

liminary differencing strategies familiar from Gaussian models have sometimes unan-

ticipated effects.

Without being more explicit about the relationship between cm and xm, it is difficult to envision

an appropriate strategy for dealing with conditional quantiles, although Koenker (2004) has made

some progress on this front.2

Correlated random-effects model: The correlated random-effects model of Chamberlain (1982,

1984) views the unobservable cm as a linear projection onto the observables plus a disturbance:

cm = ψ + x′
m1λ1 + x′

m2λ2 + vm, (5)

where ψ is a scalar and v is a disturbance that (by definition of linear projections) is uncorrelated

with xm1 and xm2. Combining equations (1) and (5) yields

ym1 = ψ + x′
m1(β + λ1) + x′

m2λ2 + vm + um1 (6)

and

ym2 = ψ + x′
m1λ1 + x′

m2(β + λ2) + vm + um2. (7)

The parameters (ψ, β, λ1, λ2) in (6) and (7) can be estimated by least-squares regression or other

methods (see, e.g., Wooldridge (2002, Section 11.3)). These equations make it clear how the

observables affect the outcomes in both periods. The vector xm1 affects ym1 through two channels,

(i) a direct effect (expressed by the x′
m1β term) and (ii) an indirect effect working through the

unobservable effect cm. In contrast, the vector xm1 affects ym2 only through the unobservable

effect cm. In fact, under the additional assumption3

(A2) E(vm|xm) = 0, (8)

note that the “meaning” of β is given by the following equation

β =
∂E(ym1|xm)

∂xm1
− ∂E(ym2|xm)

∂xm1
=
∂E(ym2|xm)

∂xm2
− ∂E(ym1|xm)

∂xm2
. (9)

That is, β gives the differential impact of xm1 upon the conditional expectations of ym1 and ym2.

In other words, β tells us how much xm1 affects E(ym1|xm) above and beyond the effect that works

through the unobservable cm.
2The important assumption for the approach in Koenker (2004) is that the fixed effect appears the same way in

all conditional quantiles (i.e., for all values of τ). This assumption, which implies that the effect of the unobservable
is a location shift on the distribution of the dependent variable, is relaxed in what follows.

3The linear projection in (5) implies that cm and xm are uncorrelated, which is weaker than (A2).
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2.2 Estimation of effects on conditional quantiles with panel data

To consider the relevant effects of the observables on the conditional quantiles Qτ (ymb|xm) (rather

than the conditional expectation E(ymb|xm)), we consider the analogous effects to those given in

equation (9). In particular, the effects of the observables on a given conditional quantile are given

by
∂Qτ (ym1|xm)

∂xm1
− ∂Qτ (ym2|xm)

∂xm1
(10)

and
∂Qτ (ym2|xm)

∂xm2
− ∂Qτ (ym1|xm)

∂xm2
. (11)

For example, the difference in equation (10) is the effect of xm1 (first-birth observables) onQτ (ym1|xm)

above and beyond the effect on the τ -th conditional quantile that works through the unobservable.

To estimate the effects given in equations (10) and (11), a model for both Qτ (ym1|xm) and

Qτ (ym2|xm) is needed. Unfortunately, it is non-trivial to explicitly determine the conditional quan-

tile models. Consider, for example, the simple case in which the data-generating process is given

by equations (1) and (5) (which then imply equations (6) and (7)). If all of the error disturbances

(um1, um2, vm) were independent of xm, then the conditional quantile functions would take a simple

form (analogous to that of the conditional expectation function under assumption (A2)):

Qτ (ym1|xm) = ψ1
τ + x′

m1(β + λ1) + x′
m2λ2 (12)

and

Qτ (ym2|xm) = ψ2
τ + x′

m1λ1 + x′
m2(β + λ2). (13)

Under this independence assumption, note that the effect of the disturbances is reflected by a loca-

tional shift in the conditional quantiles (ψ1
τ and ψ2

τ ); the slopes do not vary across the conditional

quantiles. Without the independence assumption, however, the simple linear form for the condi-

tional quantile functions (like those in equations (12) and (13)) only arises in very special cases. In

general, the conditional quantile functions involve more complicated non-linear expressions and, in

fact, can not be explicitly written down without a complete parametric specification of the error

disturbances.

Therefore, the conditional quantiles are viewed as somewhat general functions of xm: say,

Qτ (ym1|xm) = f1
τ (xm) and Qτ (ym2|xm) = f2

τ (xm). To empirically estimate the effects in (10) and

(11), then, reduced-form models for Qτ (ym1|xm) and Qτ (ym2|xm) are specified. These reduced-form

models should be viewed as approximating the “true” conditional quantile functions f1
τ (xm) and

f2
τ (xm). In this paper, a very simple form for the reduced-form models is considered, in which the

conditional quantiles are expressed as linear (and separable) functions of xm1 and xm2:

Qτ (ym1|xm) = φ1
τ + x′

m1θ
1
τ + x′

m2λ
2
τ (14)
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and

Qτ (ym2|xm) = φ2
τ + x′

m1λ
1
τ + x′

m2θ
2
τ . (15)

Based upon (14) and (15), the effects of the observables on the conditional quantiles (see (10) and

(11)) are equal to θ1
τ − λ1

τ (for the first-birth outcome) and θ2
τ − λ2

τ (for the second-birth outcome).

Without imposing further restrictions, the parameters (φ1
τ , φ

2
τ , θ

1
τ , θ

2
τ , λ

1
τ , λ

2
τ ) can be consistently

estimated with linear quantile regression, as introduced by Koenker and Bassett (1978).

Although the linear approximation may at first appear to be restrictive, we should point

out that this strategy is the one usually employed in cross-sectional quantile regression. In the

cross-sectional case, even if the data-generating process is linear in the covariates with a mean-

zero error, the conditional quantiles will only be linear in the covariates in very special cases

(see, for example, Koenker and Bassett (1982)). Even in cross-sectional applications, then, the

conditional quantile specification chosen by an empirical researcher (linear usually) should also be

viewed as a reduced-form approximation to the true conditional quantile function. In fact, empirical

applications of quantile regression generally start (either explicitly or implicitly) with a reduced-

form approximating model of the conditional quantile function rather than with the data-generating

process (see, e.g., Buchinsky (1994) and Bassett and Chen (2001)).

The linear approximation approach is also an inherent feature of the correlated random-

effects approach for the conditional expectation model given by (1) and (5). As Chamberlain (1982)

originally pointed out, if assumption (A2) does not hold, the conditional expectation function is

non-linear; in this case, equations (6) and (7) represent linear approximations (projections) and β

represents the marginal effects of the covariates upon these linear approximations.4

For the application in this paper, we choose to impose the additional restriction that the

effects on the conditional quantiles are the same for both birth outcomes. (This restriction is

similar to the implicit restriction embodied in the linear panel-data model (1), where β does not

vary with b.5) For the conditional quantiles, let βτ denote the (common) effect vector, so that the

restriction can be expressed as

βτ = θ1
τ − λ1

τ = θ2
τ − λ2

τ . (16)

Under this restriction, the conditional quantile functions in (14) and (15) can be re-written as

Qτ (ym1|xm) = φ1
τ + x′

m1(βτ + λ1
τ ) + x′

m2λ
2
τ = φ1

τ + x′
m1βτ + x′

m1λ
1
τ + x′

m2λ
2
τ (17)

and

Qτ (ym2|xm) = φ2
τ + x′

m1λ
1
τ + x′

m2(βτ + λ2
τ ) = φ2

τ + x′
m2βτ + x′

m1λ
1
τ + x′

m2λ
2
τ . (18)

4To be precise, the expectation operator E(·) in equation (9) would be replaced by the linear projection operator
(denoted E∗(·) by Chamberlain (1982) and others).

5Royer (2004) provides estimates for a conditional expectation model in which β is allowed to vary over births.
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The simplest estimation strategy, based upon the second equalities in both (17) and (18), is to run

a pooled linear quantile regression in which the observations corresponding to both births of a given

mother are stacked together as a pair.6 In particular, a quantile regression (using the estimator for

the τ -th quantile) would be run using


y11
y12
· · ·
y21
y22
· · ·
...

· · ·
yM1
yM2




and




1 0 x′
11 x′

11 x′
12

1 1 x′
12 x′

11 x′
12

· · · · · · · · · · · · · · ·
1 0 x′

21 x′
21 x′

22
1 1 x′

22 x′
21 x′

22
· · · · · · · · · · · · · · ·

...
· · · · · · · · · · · · · · ·
1 0 x′

M1 x′
M1 x′

M2
1 1 x′

M2 x′
M1 x′

M2




(19)

as the left-hand-side and right-hand-side variables, respectively. This pooled regression directly

estimates (φ1
τ , φ

2
τ − φ1

τ , βτ , λ
1
τ , λ

2
τ ). Note that the difference φ2

τ − φ1
τ represents the effect of birth

parity.7 In a traditional panel-data context, this difference would represent the “time effect.”

Although the application considered here does not have any birth-invariant explanatory variables

(“time-invariant” variables), such variables could be easily incorporated into (19) as additional

columns in the RHS matrix; like birth parity, it would not be possible to separately identify the

direct effects of these variables on y from the indirect effects (working through c) on y.

The only difficulty introduced by the pooled regression approach involves computation of

the estimator’s standard errors. Since there is dependence within a pair of births to a given

mother, the standard formula used for the asymptotic variance of a quantile estimator (Koenker and

Bassett (1978)), which is based upon independent observations, can not be applied. For the same

reason, the standard bootstrap approach can not be used. Instead, a modified bootstrap approach is

used. In particular, a given bootstrap sample is created by repeatedly drawing (with replacement) a

mother from the sample of M mothers and including both births for that mother, where the draws

continue until the desired bootstrap sample size is reached. For a given bootstrap sample, the

pooled quantile estimator is computed. After repeating this process for many different bootstrap

samples, the original estimator’s variance matrix can be estimated by the empirical variance matrix

of the bootstrap estimates. Similarly, bootstrap percentile intervals for the parameters can be easily

constructed. The only difference from the usual bootstrap method in this context is that pairs of

observations are drawn in construction of the bootstrap sample.
6Alternatively, at some computational expense, a classical minimum-distance (CMD) approach could be used. For

this approach, the parameters from (14) and (15) would be estimated in two separate quantile regressions. Then, the
parameters βτ , λ1

τ , and λ2
τ would be estimated by the CMD objective function subject to the restrictions in (16).

7Birth parity can not be included explicitly in x since the associated components of βτ , λ1
τ , and λ2

τ would not be
separately identified.
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2.3 Review of related studies

In their recent survey of quantile regression, Koenker and Hallock (2000) cite only a single panel-

data application. The cited study by Chay (1995) uses quantile regression on longitudinal earnings

data to estimate the effect of the 1964 Civil Rights Act on the black-white earnings differential.

Chay (1995) allows the individual effect to depend on the racial indicator variable, which amounts

to a shift in the conditional quantile function and is a special case of the general approach described

in Section 2.2 (where the only non-zero components of the λ parameters would correspond to the

racial indicator variable). Interestingly, the application of Chay (1995) involves censored earnings

data, so that quantile regression methods for censored data (Powell (1984, 1986)) are needed. Such

censored-data quantile methods would also work with the general model of Section 2.2 but are not

needed for the application considered in this paper.

A more recent study that uses quantile regression for panel data is Arias et. al. (2001), who

estimate the returns to schooling (at various conditional quantiles) using twins data. To deal with

the unobserved “family effect,” the authors use proxy variables (father’s education and sibling’s

education) in the earnings-equation model. This proxy-variable approach is somewhat related to

the correlated random effects model in the sense that the latter specification can be viewed as

using the observables xm1 and xm2 as proxies for the unobserved individual effect. One could also

incorporate an external proxy (such as father’s education in the Arias et. al. (2001) case) into the

correlated random effects framework.

Another panel-data study that is directly related to our empirical application is Royer (2004),

who applies a correlated random effects model to maternally linked data from Texas. Royer (2004)

estimates the effects of various observables (with a focus upon maternal age) on “binary” birth

outcomes (such as premature birth or LBW birth). In our application, the dependent variable

(birthweight) is continuous, which allows for the estimation of conditional quantile effects. In

Royer (2004), fixed-effects estimation is also possible (in the context of the linear probability model)

whereas no such alternative is available in the conditional quantile case. Finally, Royer (2004) re-

laxes the strict exogeneity assumption (required for consistency of the fixed-effects estimator) in

several interesting ways.8 Analogous extensions to the conditional quantile models are left for

future research.
8Unfortunately, identification of the least restrictive models requires panel data with at least three births per

mother. As a practical matter, this requirement reduces the sample size to an extent that makes the estimated effects
of observables rather imprecise and introduces a possible selection bias (see the discussion in Royer (2004, pp. 39ff)).
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3 Data

In the United States, detailed “natality data” is recorded for nearly every live birth that oc-

curs. Detailed information on maternal characteristics (age, education, race, etc.), birth outcomes

(birthweight, gestation, etc.), and prenatal care (number of prenatal visits, smoking status, etc.) is

collected by each state (with federal guidelines on specific data-item requirements). The National

Center for Health Statistics compiles the data from the individual states and makes it publicly avail-

able to researchers. Due to confidentiality restrictions, it is impossible to receive comprehensive

natality data with personal identifiers at the federal level, making it difficult to reliably construct

maternally-linked panel data. However, individual states may release such personal identifiers to

researchers, subject to confidentiality agreements in most cases. The data used in this study were

obtained from two states, Washington and Arizona, and are described in detail below:

1. Washington data: The Washington State Longitudinal Birth Database (WSLBD) was pro-

vided by Washington’s Center for Health Statistics. The WSLBD is a panel dataset consisting

of all births between 1992 and 2002 that could be accurately linked together as belonging to

the same mother.9 The linking of the original data was a collaboration between the Wash-

ington State Department of Health and the Department of Epidemiology at the University

of Washington. The matching algorithm used to construct the WSLBD used personal iden-

tifying information such as mother’s full maiden name and mother’s date of birth. For two

births to be linked together, (i) an exact match on mother’s name, mother’s date of birth,

mother’s race, and mother’s state of birth was required, and (ii) consistency of birth parity

and the reported interval-since-last-birth was required. Only births that could be uniquely

linked together were retained in the WSLBD.

2. Arizona data: The Arizona Department of Health Services provided the authors with data

on all births occurring in the state of Arizona between 1993 and 2002. Although names

were not provided, the exact dates of birth for both mother and father were provided in the

data. To maternally link births together, we followed as closely as possible to the algorithm

used for the Washington data. For two births to be linked together, (i) an exact match on

mother’s date of birth, father’s date of birth, mother’s race, and mother’s state of birth was

required, and (ii) consistency of birth parity and the reported interval-since-last-birth was

required. As with the Washington data, only births that could be uniquely linked together

were retained. Since births could not be linked by maternal name, we decided to also require

an exact match on father’s date of birth in order to minimize the chance of false matches
9The original WSLBD has births dating back to 1980, but mother’s education is not available as a data item until

1992. The time period 1992–2002 is also comparable to the one used for Arizona.
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entering the sample.10 This decision restricts the Arizona sample to mothers whose children

had the same birth father, which is not a restriction of the Washington sample.

For the purposes of this study, particular subsamples of the Washington and Arizona

maternally-linked data are considered: all pairs of first and second births to white mothers. In

particular, birth outcomes (and the effects of other variables upon birth outcomes) have been

found to differ across different races and at higher birth parities. The choice of subsample circum-

vents this issue by focusing upon a more homogeneous sample. The resulting estimates, of course,

should be interpreted as being applicable to the subpopulation represented by this sample choice.

Table 1 provides descriptive statistics for the Washington and Arizona samples, broken

down by first-child and second-child births. Any mothers that had data items missing in either

of her two births (for the variables summarized in Table 1) were dropped from the sample. The

resulting samples used for estimation consist of 45,067 Washington mothers (90,134 births) and

56,201 Arizona mothers (112,402 births). Sample averages are reported for all variables, as well

as standard deviations (in parentheses) for the non-indicator variables. The “Smoke” (“Drink”)

variable is equal to one if the mother reported smoking (drinking alcohol) during pregnancy. Al-

though alcohol consumption during pregnancy is known to be severely under-reported, the “Drink”

variable is included in the regressions as it may be useful a proxy for other unobservables. For

the Washington data, the four prenatal-care variables (“No prenatal care,” “1st-trimester care,”

“2nd-trimester care,” and “3rd-trimester care”) represent mutually exclusive categories that were

constructed on the basis of the reported month of the first prenatal-care visit. Unfortunately, the

month of first prenatal-care visit is not reported in the Arizona data until 1997. As a result, only

the number of prenatal visits and an indicator variable for “no prenatal care” (equal to one if there

are no prenatal visits) are summarized in Table 1 and used in the empirical analysis of Section 4.

The other variables are self-explanatory.

The descriptive statistics in Table 1 indicate that average birthweight increases by 88 grams

at the second birth for both Washington mothers and Arizona mothers. For their second birth,

Table 1 also indicates that women are less likely to smoke and drink and more likely to be married,

have a male child, and have their first prenatal-care visit during the first trimester. Based on the

summary statistics, the two samples of mothers are quite similar. On average, Arizona mothers are

slightly less educated and have babies with higher birthweight. The largest difference between the

two samples appears to be the level of smoking: Washington mothers report smoking in 13.7% of

pregnancies (which is right around the national average during this time period), whereas Arizona

mothers report smoking in only 4.7% of pregnancies. Similarly, Arizona mothers have a lower
10This choice turns out to have very little impact on the estimation results reported in Section 4. Estimates for a

sample matched only on mother’s date of birth were extremely similar.
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Table 1: Descriptive Statistics, Washington and Arizona Birth Panels

Variable Washington Arizona
1st Child 2nd Child 1st Child 2nd Child

Birthweight (in grams) 3442 (523) 3530 (536) 3339 (517) 3427 (505)
Male child 0.515 0.511 0.520 0.516
Mother’s age 25.27 (5.25) 27.89 (5.35) 25.23 (5.26) 27.85 (5.36)
Mother’s education 13.52 (2.32) 13.72 (2.21) 13.21 (2.68) 13.39 (2.61)
Married 0.751 0.853 0.780 0.886
No prenatal care 0.004 0.003 0.005 0.006
1st-trimester care 0.879 0.895 — —
2nd-trimester care 0.107 0.093 — —
3rd-trimester care 0.014 0.012 — —
Smoke 0.143 0.132 0.049 0.044
Drink 0.017 0.014 0.009 0.007
# prenatal visits 12.06 (3.53) 11.63 (3.25) 11.83 (3.59) 11.73 (3.55)
Year of birth 1995.0 (2.2) 1997.8 (2.3) 1996.3 (2.3) 1998.9 (2.2)
# of Observations 45,067 45,067 56,201 56,201

reported rate of drinking during pregnancy.

4 Results

4.1 Regression results

This section reports the results from regression analysis (least-squares regressions and quantile

regressions) using the two maternally linked datasets described in Section 3. In the interest of

space, the full set of numerical results (tables) and a detailed discussion are provided only for

the Washington data (Section 4.1.1). The Arizona results are reported in a graphical format

comparable to the Washington results (Section 4.1.2), but the detailed tables have been omitted

and the discussion is limited to comparisons with the Washington results.11

4.1.1 Washington data

The tables report estimates for the quantiles τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90} (along with least-

squares estimates for comparison), although the figures presented in this section consider marginal

effects at all quantiles within the (0, 1) range. Throughout this section, the dependent variable of

interest is birthweight (measured in grams). In order to have a relevant comparison for the panel-

data results, cross-sectional results (without incorporating the correlated random effects) are also
11The tables are available upon request from the authors.
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reported. For the cross-sectional results, the panel structure of the data is only used for computing

standard errors. Since each mother appears twice in the data, the pair-sampling bootstrap described

at the end of Section 2.2 is used.

The cross-sectional results are reported in Table 2. The model specification includes the

variables summarized in Table 1, along with an indicator variable for the second child and quadratic

variables for both mother’s age and education. For the prenatal-care variables, the omitted category

corresponds to first-trimester prenatal care, so the estimates for the other three prenatal-care

variables (“No prenatal care,” “2nd-trimester care,” and “3rd-trimester care”) should be interpreted

as differences from first-trimester prenatal care. Overall, the cross-sectional results are quite similar

to those found in previous studies using federal natality data (Abrevaya (2001); Koenker and

Hallock (2001)).

The panel-data results are reported in Table 3. These results are based upon the same model

specification as used for the cross-sectional estimation, but the unobserved heterogeneity is modeled

as in Section 2.2 (see equations (17) and (18)). For the pooled quantile regressions, Table 3 reports

the estimates of the marginal effects βτ . The estimates of the unobserved-heterogeneity parameters

λ1
τ and λ2

τ are reported in the Appendix (see Tables 6 and 7). To provide a more complete view

of the variables’ effects on birthweights and to allow an easy comparison with the cross-sectional

estimates, Figures 1 and 2 plot the estimated effects from both the panel and cross section. For

these figures, the quantile regressions were estimated at 2% intervals, from the 6% quantile through

the 94% quantile (inclusively). The panel-data estimates are represented with a solid line, and the

90% confidence intervals (bootstrap percentile intervals) for these estimates are represented with

dashed lines. The cross-sectional estimates, computed at the same quantiles, are represented with

a dotted line. (To avoid cluttering the figures, confidence intervals for the cross-sectional results

are not reported. The size of these intervals can, however, be inferred from the standard errors

in Table 2.) Since both age and education have quadratic terms in the model specification, the

marginal-effect plots for age and education are based upon estimates evaluated at specific values for

the two variables (25 years old for age and 12 years for education level); other choices are considered

in later figures.
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Table 2: Cross-Sectional Estimation Results, Washington Data

Quantile regressions
10% 25% 50% 75% 90% OLS

Second child 99.877*** 94.147*** 93.652*** 100.620*** 111.385*** 99.537***
(6.950) (5.041) (4.273) (4.872) (6.963) (3.881)

Male child 87.939*** 115.533*** 128.175*** 143.241*** 162.446*** 124.355***
(6.156) (4.357) (3.853) (4.211) (5.597) (3.530)

Age 20.629*** 14.205*** 7.788** 7.966** 6.347 12.693***
(6.215) (4.093) (3.484) (3.972) (5.398) (3.385)

Age2 -0.405*** -0.268*** -0.138** -0.123* -0.087 -0.230***
(0.111) (0.071) (0.062) (0.070) (0.095) (0.059)

Education 30.223** 21.791** 28.921*** 27.002*** 22.981** 26.809***
(13.397) (8.615) (7.615) (6.689) (10.427) (7.096)

Education2 -0.723 -0.571* -0.878*** -0.927*** -0.756** -0.783***
(0.492) (0.318) (0.285) (0.254) (0.384) (0.263)

Married 38.045*** 26.731*** 26.936*** 22.778*** 16.981* 28.295***
(10.133) (7.165) (6.102) (7.068) (9.246) (5.932)

No prenatal care -339.441* -19.984 -31.511 21.406 172.522** -33.188
(187.306) (54.127) (40.988) (43.051) (70.822) (47.619)

2nd-trimester care 38.251*** 28.510*** 24.911*** 30.894*** 37.894*** 38.487***
(11.313) (8.226) (7.215) (8.380) (10.691) (6.547)

3rd-trimester care 109.139*** 64.813*** 38.997** 24.150 24.621 65.764***
(29.028) (19.721) (18.665) (17.290) (23.469) (14.794)

Smoke -184.857*** -181.088*** -178.764*** -177.093*** -162.289*** -177.721***
(11.027) (7.461) (6.267) (7.428) (9.988) (6.219)

Drink -48.027* -37.352* -11.290 -20.388 4.897 -20.838
(26.412) (20.167) (15.649) (19.096) (23.925) (14.255)

# prenatal visits 19.458*** 16.532*** 15.016*** 14.905*** 14.072*** 18.458***
(1.367) (0.903) (0.767) (0.831) (1.084) (0.864)

Year of birth -4.732*** -2.820** -3.235*** -3.769*** -3.945*** -3.914***
(1.452) (1.114) (0.949) (1.042) (1.402) (0.899)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1,000 bootstrap replications.

‘*’: significant at 10 percent level, double-sided (normal dist.).
‘**’: significant at 5 percent level, double-sided (normal dist.).
‘***’: significant at 1 percent level, double-sided (normal dist.).
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Table 3: Panel-Data Estimation Results (βτ ), Washington Data

Quantile regressions
10% 25% 50% 75% 90% OLS

Second child 146.280*** 115.821*** 113.501*** 117.857*** 129.274*** 126.843***
(12.593) (8.444) (7.232) (8.029) (11.514) (6.201)

Male child 103.551*** 131.336*** 147.141*** 159.386*** 173.639*** 138.680***
(7.889) (5.064) (4.349) (4.897) (6.738) (3.672)

Age -29.931** -15.960* -29.779*** -25.504*** -43.480*** -25.358***
(13.174) (8.537) (7.702) (8.337) (11.692) (6.363)

Age2 0.515*** 0.280** 0.476*** 0.515*** 0.808*** 0.462***
(0.197) (0.121) (0.107) (0.117) (0.160) (0.091)

Education 29.548* 18.950 25.557*** 19.832** 2.592 19.073**
(17.625) (11.814) (9.827) (8.731) (13.806) (7.811)

Education2 -1.099 -0.966* -0.970** -0.833** -0.364 -0.844**
(0.748) (0.507) (0.420) (0.396) (0.625) (0.341)

Married 38.193** 17.403 30.129*** 19.674* 10.078 28.628***
(16.888) (11.520) (9.372) (11.244) (16.123) (8.353)

No prenatal care -318.447* -16.165 5.172 31.742 263.254*** -18.000
(170.299) (59.757) (51.786) (53.259) (74.783) (48.026)

2nd-trimester care 22.497 8.119 -1.042 22.208** 31.439** 21.479***
(14.373) (10.445) (8.656) (10.169) (14.242) (6.924)

3rd-trimester care 62.483* 70.998*** 29.725 35.269 33.807 54.505***
(34.905) (24.600) (23.075) (24.457) (32.193) (17.452)

Smoke -26.199 -60.302*** -82.545*** -54.549*** -60.125*** -56.471***
(19.221) (14.131) (11.260) (12.237) (17.510) (9.084)

Drink -73.406** -38.813 -4.036 -3.625 -9.901 -24.773
(35.327) (24.073) (19.747) (22.734) (29.454) (15.584)

# prenatal visits 20.189*** 14.966*** 12.686*** 12.309*** 12.624*** 17.464***
(1.608) (1.108) (0.869) (0.979) (1.432) (0.928)

Year of birth -16.733** -7.248 -4.432 -9.153 -6.998 -11.383***
(7.947) (5.259) (4.961) (5.626) (7.962) (3.990)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1,000 bootstrap replications.

‘*’: significant at 10 percent level, double-sided (normal dist.).
‘**’: significant at 5 percent level, double-sided (normal dist.).
‘***’: significant at 1 percent level, double-sided (normal dist.).
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The estimated effects of the various variables, as presented in Tables 2 and 3 and Figures 1

and 2, are discussed in more detailed below:

Second child: Birthweights are uniformly larger for second children at all quantiles, for both

the cross-sectional and panel estimates. The panel estimates of the second-child effect are

somewhat larger than the cross-sectional estimates, with the largest effects at the lowest

quantiles (e.g., 146 grams at the 10% quantile).

Male child: It is well-known that, on average, male babies weigh more at birth than female babies.

The quantile estimates indicate that the positive male-child effect on birthweight is present at

all quantiles of the conditional birthweight distribution. The magnitude of the effect increases

when one moves from lower quantiles to higher quantiles, with the panel estimates indicating

a slightly higher effect (10–20 grams) than the cross-sectional estimates.

Age and education: Figure 1 shows the estimated (one-year) effects of age and education, evaluated

at 25 years of age and 12 years of education, respectively. For age, both the cross-sectional and

panel estimates are very close to zero in magnitude (and statistically insignificant at a 5% level

for all quantiles). For education, the cross-sectional estimates are positive across the quantiles

and statistically significant (at a 5% level) except at quantiles above 80%. In contrast, the

panel estimates are statistically insignificant across all quantiles. This difference could be due

to two factors: (i) the amount of within-mother variation in education is quite small, with

the average change in education for the sample being about 0.2 years; and, (ii) the level of

education may be correlated with the mother-specific unobservable. For the latter factor,

years of schooling is likely positively correlated with cm, which would imply that the cross-

sectional estimates are biased upwards. To consider the effects of age and education elsewhere

in the covariate distribution, Figure 3 shows the estimated quantile effects at an age of 35

and an education level of 16 years (i.e., college educated). In addition to the panel estimates

(with 90% confidence bands) and the cross-sectional estimates, this figure also provides plots

of the estimated “effects” on the unobservable cm (as calculated from the λ1
τ and λ2

τ estimates)

along with 90% confidence bands. For the age effects, the panel estimates are now above the

cross-sectional estimates (whereas they were below them at an age of 25). The panel estimates

of the age effect are slightly positive at all quantiles (reaching about 10 grams at the highest

quantiles) and marginally significant at a 10% level for most quantiles between 55% and 85%.

These estimates are somewhat different from the cross-sectional estimates, which are negative

at all quantiles and significantly so at a 5% level for quantiles below 25%. Looking at the plots

of the age effects on the unobservable, it appears that there is a slight positive relationship

between an additional year of age (evaluated at age 35) and the unobservable cm at the lower

17



quantiles. These plots explain why the panel estimates of age in the original plot are so close

to zero for the lower quantiles but slightly more positive at the higher quantiles. Finally, for

the education effect at 16 years of education, there is not much evidence of significant effects.

The cross-sectional estimates are only significant at a 10% level at the very lowest quantiles,

with the point estimates reaching an 8-gram positive effect at the 4% quantile. The estimated

effects from the panel specification are actually all negative, but none of the point estimates is

significant at a 5% level. These results are perhaps not surprising since 16 years of schooling

already represents a high level of education and an additional year would not be expected to

have much of a marginal effect.

Marital status: The estimated positive effects of marriage on birthweight are quite similar for the

cross-sectional and panel specifications, in the 20–50 gram range over the quantiles consid-

ered. The differential impact in the cross-sectional impacts seems to be most evident at the

lowest quantiles, where the marriage effect approaches 50 grams. One should be cautious

about interpreting the cross-sectional marriage estimates as causal since marital status is an

explanatory variable that a priore would appear to serve as a proxy for mother-specific unob-

servables (i.e., marital status positively correlated with cm). The panel estimates are slightly

lower than the cross-sectional estimates in the lower quantiles (until around the 40% quan-

tile), suggesting that this might be a factor in the lower quantiles. Somewhat surprisingly,

however, the panel estimates of the marriage effect remain positive throughout the range of

quantiles and significantly so (at the 10% level) at nearly all the quantiles below 80%. On

the whole, the estimates are consistent with a situation in which marriage provides the birth

mother with support (support at home, financial support, emotional support, etc.) that would

lead to a more favorable birth outcome.
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Prenatal-care visits: The information on prenatal-care visits in the model specification consists

of (i) the trimester of the first prenatal visit (if any) and (ii) the number of prenatal visits

(if any). It should be pointed out that interpreting the effect of any prenatal-care variable

is a bit difficult since the observed prenatal care proxies for both intended prenatal care and

pregnancy problems. For instance, if two mothers have identical intentions (at the beginning

of pregnancy) with respect to prenatal-care visits, the mother that experiences problems

early in her pregnancy would be more likely to have an earlier first prenatal-care visit and to

have more prenatal-care visits overall. The estimated effects of the prenatal-care variables,

therefore, may reflect the combined effects of intended care and pregnancy complications.12

The estimates for the no-prenatal-care indicator variable, which are significantly negative

at the 10% quantile and significantly positive at the 90% quantile, illustrate this point. A

possible explanation for the dramatic difference at the two ends of the distribution is that lack

of prenatal care is more likely to proxy for lack of intended care at the lowest quantiles and

more likely to proxy for a problem-free pregnancy at the highest quantiles. At the intermediate

quantiles, the effect of the no-prenatal-care indicator is found to be statistically insignificant in

both the cross-sectional and panel results. For the third-trimester-care indicator variable, the

cross-sectional and panel estimates are similar, indicating positive effects (as compared to first-

trimester care) which become less statistically significant at higher quantiles. For the indicator

variables, the largest difference between the cross-sectional and panel results shows up in the

second-trimester-care variable; the cross-sectional estimates are statistically significant at all

quantiles and range from 25 to 50 grams, whereas the panel estimates are somewhat lower

(close to zero in intermediate quantiles) and only significantly positive at the highest quantiles.

The effect of the number of prenatal visits is estimated to be significantly positive across all

quantiles, with larger effects found at lower quantiles and the effects essentially “flattening

out” (at around 14–15 grams per visit for the cross-sectional results and 12–13 grams per

visit for the panel results). The estimated effects for the panel specification exhibit a sharper

decline, leading to lower estimates (roughly a 2-gram per-visit differential) than the cross-

sectional specification. This variable shows up significantly in the λ1
τ and λ2

τ estimates (see

Tables 6 and 7), leading to the differences found and suggesting that the variable is correlated

with the mother-specific unobservable.

Smoking: The most dramatic difference between the cross-sectional and panel results involves the

estimated effects of smoking. The cross-sectional results indicate that the negative effects of

smoking are in the range of 150–200 grams, with larger effects at lower quantiles. The panel
12This idea has been independently investigated by Conway and Deb (2005), who (i) find that bimodal residuals

result from a standard 2SLS regression of birthweight and (ii) use a two-class mixture model to explicitly allow for a
difference between “normal” and “complicated” pregnancies.
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estimates are still significantly negative at all but the lowest quantiles, but the estimated

effects are much lower in magnitude (mostly in the 50–80 gram range between the 20% and

80% quantiles). The omitted-variables explanation of this large difference would be that

the smoking indicator in the cross-sectional specification is negatively correlated with the

error disturbance in the birthweight regression equation. Consistent with this explanation,

the smoking coefficients in both λ1
τ and λ2

τ are found to be significantly negative across the

quantiles (see Tables 6 and 7). The magnitudes of the cross-sectional and panel estimates are

roughly in agreement with those found by Abrevaya (2005) for the (conditional expectation)

effects in federal natality data. Misclassification of smoking status could explain part of the

difference found here since the effect of misclassification is more severe in the panel-data case

(see, for example, Freeman (1984) and Jakubson (1986)). However, Abrevaya (2005) finds

that the misclassification rate would have to be unrealistically large (with roughly 50% of

smokers being misclassified as non-smokers) to explain the difference in estimates.13

Alcohol consumption: In contrast to the smoking results, the estimated effects of alcohol con-

sumption (as measured by the alcohol-consumption indicator variable) are quite similar for

the cross-sectional and panel specifications. Drinking is estimated to have significant negative

effects at lower quantiles (below about the 20% quantile), with the magnitudes of the effects

ranging between about 40 and 80 grams. Of course, very few mothers actually report that

they consumed alcohol during pregnancy (only about 1.5% in our sample). The lack of strong

statistical evidence regarding the effects of drinking could stem from the low variation in the

indicator variable and the probable large rates of misclassification.

4.1.2 Arizona data

Figures 4 and 5 plot the estimated quantile effects (6% through 94% quantiles, inclusively) for the

Arizona maternally-linked sample. The same model specification discussed above was used, except

that indicator variables for second-trimester and third-trimester prenatal care were not included.

The figures are comparable to Figures 1 and 2 for the Washington data, with the age effect reported

at 25 years and the education effect at 12 years.

Overall, there is a remarkable similarity between the results for the two samples. The

common findings for the two samples include the following:

• There is a significant positive effect of the second child across all quantiles (50–110 grams

from the Arizona panel estimates).
13Moreover, if misclassification is correlated across births for individual mothers, the (unconditional) misclassifica-

tion rate would need to be even higher to explain the observed difference in the estimates.
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• The positive birthweight effect of a male child increases from lower to higher quantiles.

• Despite a positive estimated cross-sectional effect of education at lower quantiles, the panel

estimates indicate no significant education effect.

• The effect of the number of prenatal visits is highest at lower quantiles, with the effect

flattening out at higher quantiles. For both Washington and Arizona, the cross-sectional

estimate of the effect is lower at lower quantiles and higher at higher quantiles.

• The magnitude of the negative smoking effect is significantly lower for the panel estimates

(ranging between 40 and 80 grams for Arizona) than for the cross-sectional estimates.

Some differences between the results for the two samples are also worth noting:

• Although the cross-sectional estimates of the marriage effect are still significantly positive (p-

values lower than 0.10 throughout the range of quantiles), the panel-data estimates indicate

no statistically significant effect of marriage for Arizona mothers. The likely explanation

of this finding is that the father’s date of birth is required to match for both births of an

Arizona mother (see Section 3), meaning that the father is the same even if marital status

differs across the births. For the Washington sample, a change in marital status might also

be related to a change in father.

• Drinking is not found to have a statistically significant effect at any of the quantiles (either

in the cross section or the panel).

• Due to the lack of indicator variables for second-trimester and third-trimester care, the esti-

mated effects of the no-care indicator variable and the number of prenatal visits are slightly

different. The magnitude of the quantile effects for number of prenatal visits is roughly 50%

lower for the Arizona sample, although the shape of the quantile-effect curve is extremely

similar. The shape of the no-prenatal-care effect is also very similar to that of Washington,

but the estimated panel effects are not significantly different from zero at any of the quantiles.
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4.2 Hypothesis testing

In this section, we discuss the results of several hypothesis tests that were used in order to test the

model specification and/or the significance of differences across the estimates at different quantiles.

The minimum-distance (MD) framework of Buchinsky (1998) is used (and extended to the panel-

data case) to test various (linear) restrictions placed on the parameters in the estimated models.

4.2.1 Minimum-distance testing framework

Let p denote the number of different quantiles at which the model is estimated, with τ1, . . . , τp

denoting the quantiles. For a given quantile τ , individual elements of the parameter vectors β, λ1
τ ,

and λ2
τ (recall the model in (17) and (18)) are referenced by subscripts as follows:

βτ = (βτ1, ..., βτK)′

λ1
τ =

(
λ1

τ1, . . . , λ
1
τK

)′

λ2
τ =

(
λ2

τ1, . . . , λ
2
τK

)′
,

where K is the number of variables in xm1 and xm2. Then, for a given quantile τ , the full parameter

vector is denoted

γτ ≡
(
φ1

τ , βτ0, β
′
τ , λ

1
τ
′
, λ2

τ
′)′
, (20)

where βτ0 ≡ φ2
τ − φ1

τ . The (stacked) parameter vector for all of the estimated quantiles is denoted

γ ≡ (γ′
τ1 , γ

′
τ2 , . . . , γ

′
τp

)′ (21)

and has dimension p(3K + 2) × 1. Further, let γ̂ denote the estimator of γ, and define Â to be the

estimated variance-covariance matrix (obtained via the bootstrap) of γ̂.

In the MD framework, the “restricted” parameter estimator is defined as

γ̂R = arg min
γR∈Θ

(
γ̂ −RγR

)′
Â−1 (

γ̂ −RγR
)
, (22)

where R is a restriction matrix that will depend on the type of restrictions imposed. Since only

linear restrictions are considered, γ̂R can be written explicitly as

γ̂R =
(
R′Â−1R

)−1 (
R′Â−1γ̂

)
. (23)

The asymptotic variance of γ̂R is given by

var(γ̂R) =
(
R′Â−1R

)−1
. (24)
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For the purposes of hypothesis testing, note that under the null hypothesis that the restrictions are

true (i.e., H0 : γ = RγR), the following MD test statistic has a limiting chi-square distribution:

(
γ̂ −Rγ̂R

)′
Â−1 (

γ̂ −Rγ̂R
) d−→

H0
χ2

M , (25)

where M is the number of restrictions (i.e., M = rows (R)−columns (R)). The Appendix provides

specific details on the appropriate choice of R and M for each of the tests described below.

4.2.2 Test results

Using the MD testing framework, the following hypothesis tests were conducted:

Test of correlated random effects: To determine whether a “pure” random effects specification (in

which cm is uncorrelated with xm) would be rejected for a given quantile τ , the null hypothesis

H0 : λ1
τ = λ2

τ = 0 is tested. For each of the quantiles (τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90})

reported in Table 3, the null hypothesis is overwhelmingly rejected with a p-value extremely

close to zero.

Test of the equality of the “effect vector” across quantiles: This test considers whether there

are any statistically significant differences in the βτ estimates across two different quantiles.

Table 4 summarizes the results of this test applied to every pairwise combination of quantiles

from the set {0.10, 0.25, 0.50, 0.75, 0.90}. The table reports the p-values of these pairwise

tests for the panel specifications for both Washington and Arizona. For Washington, the

p-values indicate very significant differences across the quantiles. The largest p-values arise

for the adjacent quantiles in the panel specification, but these are all still below 2%. For

Arizona, there are again very significant differences between the lowest quantiles (10% and

25%) and other quantiles, but the p-values are quite high for 50%/90% comparison (p-value

of 0.231) and the 75%/90% comparison (p-value of 0.859). (The pairwise p-values for the

cross-sectional specifications, which were computed but are not reported, were all lower than

their panel-data counterparts.)

Test of the equality of individual variables’ effects across quantiles: For a given variable (for exam-

ple, marital status), this test checks whether the estimated effects at different quantiles are

significantly different. For the results reported here, the set of different quantiles considered

is the same as that used in Tables 2 and 3. For the marriage indicator, for instance, the

null hypothesis would be H0 : βmarried
τ=0.10 = βmarried

τ=0.25 = βmarried
τ=0.50 = βmarried

τ=0.75 = βmarried
τ=0.90 . Since

both age and education enter into the model specification in two terms (a linear term and a

quadratic term), the appropriate tests for these two variables are joint tests of equality. The
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Table 4: Pairwise Tests of βτ Equality Across Quantiles (p-values reported)

Panel Specification (Washington)
10% 25% 50% 75%

25% 0.000
50% 0.000 0.015
75% 0.000 0.002 0.020
90% 0.000 0.000 0.000 0.012

Panel Specification (Arizona)
10% 25% 50% 75%

25% 0.000
50% 0.000 0.001
75% 0.000 0.000 0.061
90% 0.000 0.000 0.231 0.859

Based on 1,000 bootstrap replications.

test results (p-values) for all of the variables, in both the cross-sectional and panel specifi-

cations, are reported in Table 5 for Washington and Arizona. The results are very much in

line with the quantile-estimate graphs in Figures 1–2 and Figures 4–5. Two variables (male-

child indicator and number of prenatal visits) vary significantly across the quantiles for both

the cross-sectional and panel specifications. The effect of the no-prenatal-care indicator also

varies significantly (p-value of 0.013 in the cross section and 0.005 in the panel) for the Wash-

ington sample. On the other hand, there is no statistical evidence that the effects of marital

status, drinking, or birth year vary over quantiles in either specification. The cross-sectional

estimated effects of both age and education vary significantly across quantiles, whereas the

panel estimated effects do not. Interestingly, for the smoking-indicator variable, the p-value

for the Washington cross-sectional results is quite high (0.396) even though Figure 2 had

suggested a slight decline in the magnitude of the smoking effect at higher quantiles. In con-

trast, the p-value for the smoking variable in the Washington panel specification suggests a

significant difference in the estimated effects across quantiles. Finally, it should be noted that

the choice of the quantile set {0.10, 0.25, 0.50, 0.75, 0.90} is admittedly arbitrary, following

what has apparently become the convention in the field of quantile regression. Other choices

of the quantile set would obviously yield different numerical results (p-values), but it would

be surprising if they resulted in qualitatively different results.
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Table 5: Testing Equality of Marginal Effects Across Quantiles (p-values reported)

Washington Arizona
Cross Panel Cross Panel

Section Data Section Data
Second child 0.121 0.057 0.000 0.061
Male child 0.000 0.000 0.000 0.000
Age, Age2 jointly 0.010 0.246 0.000 0.450
Education, Education2 jointly 0.012 0.358 0.001 0.946
Married 0.521 0.451 0.677 0.705
No prenatal care 0.013 0.005 0.359 0.867
2nd-trimester care 0.573 0.095 — —
3nd-trimester care 0.109 0.610 — —
Smoke 0.396 0.045 0.160 0.976
Drink 0.318 0.429 0.327 0.834
# prenatal visits 0.004 0.000 0.010 0.000
Year of birth 0.512 0.642 0.959 0.073

Results based on 1,000 bootstrap replications.

5 Conclusion

This paper has considered estimation of the effects of various prenatal-care variables and maternal

characteristics upon quantiles of the (conditional) birthweight distribution. To deal with the unob-

served heterogeneity of childbearing women, a panel dataset consisting of maternally-linked births

was utilized. The estimated conditional quantile effects are analogous to the conditional expecta-

tion effects that arise from the correlated random-effects model of Chamberlain (1982, 1984). Since

the quantile-regression techniques (and testing methodology) are straightforward to apply and the

estimated effects have a rather simple interpretation, the approach of this paper should be useful

for other researchers seeking to estimate “causal” quantile effects through the use of panel data.

In situations where panel data is not available, estimation of “causal” quantile effects in a cross-

sectional setting has recently been considered in several studies, including Abadie et. al. (2002) and

Chernozhukov and Hansen (2004, 2005).

Appendix A: Details on hypothesis testing

This section of the Appendix provides details on the hypothesis tests conducted in Section 4.2.2.

• (Test of correlated random effects) Test of H0 : λ1
τi = 0 ∧ λ2

τi = 0 simultaneously ∀i ∈
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{1, . . . ,K} and ∀τ ∈ {τ1, τ2, . . . , τp}. Define

R′ ≡
[

Ip×p ⊗ [
1 O1×((K+1)+2K)

]
Ip×p ⊗ [

O(K+1)×(K+2) I(K+1)×(K+1) O(K+1)×2K

] ]
,

and use M = 2pK.

• (Test of the equality of the “effect vector”) Test of H0 : βτ1i = βτ2i = · · · = βτpi simultaneously

for ∀i ∈ {0, 1, 2, . . . ,K}. Let ip be a (p, 1) vector of ones. To perform this test, define

R′ ≡

 Ip×p ⊗ [

1 O1×((K+1)+2K)
]

Ip×p ⊗ [
O2K×(K+2) I2K×2K

]
i′p ⊗ [

O(K+1)×1 I(K+1)×(K+1) O(K+1)×2K

]



and use M = (p− 1)(K + 1).

• (Test of the equality of individual variables’ effects (single parameter)) Test of H0 : βτ1i =

βτ2i = · · · = βτpi for a single i ∈ {0, 1, 2, . . . ,K}. Let

E1 ≡ Ip×p ⊗ [
1 O1×((K+1)+2K)

]
,

E2 ≡ Ip×p ⊗ [
O2K×(K+2) I2K×2K

]
,

E3 ≡ i′p−1 ⊗ [
O(K+1)×1 Dii,(K+1)×(K+1) O(K+1)×2K

]
,

and

E4 ≡
[

O(K+1)×1 I(K+1)×(K+1) O(K+1)×2K E3
O(p−1)K×1 O(p−1)K×(K+1) O(p−1)K×2K I(p−1)×(p−1) ⊗ S−i·

]
,

where

S ≡ [
O(K+1)×1 I(K+1)×(K+1) O(K+1)×2K

]
,

and S−i· is equal to S without the i’th row. Dii,(K+1)×(K+1) is a matrix of zeros except

for the entry (i, i) which equals unity. Then, the test of H0 can be performed by defining

R ≡ (E′
1, E

′
2, E

′
4)

′, with M = p− 1.

• (Test of the equality of individual variables’ effects (joint test of two parameters)) Test of

H0 : βτ1i = βτ2i = · · · = βτpi ∧ βτ1j = βτ2j = · · · = βτpj for i, j ∈ {0, 1, 2, . . . ,K} and i �= j.

Let

E1 ≡ Ip×p ⊗ [
1 O1×((K+1)+2K)

]
,

E2 ≡ Ip×p ⊗ [
O2K×(K+2) I2K×2K

]
,

E3 ≡ i′p−1 ⊗ [
O(K+1)×1 D(ii,jj)(K+1)×(K+1) O(K+1)×2K

]
,

and

E4 ≡
[

O(K+1)×1 I(K+1)×(K+1) O(K+1)×2K E3
O(p−1)(K−1)×1 O(p−1)(K−1)×(K+1) O(p−1)(K−1)×2K I(p−1)×(p−1) ⊗ S−ij·

]
,
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where

S ≡ [
O(K+1)×1 I(K+1)×(K+1) O(K+1)×2K

]
,

and S−ij· is equal to S without rows i and j. D(ii,jj)(K+1)×(K+1) is a matrix of zeros except

for the entries (i, i) and (j, j) which both equal unity. To test H0, define R ≡ (E′
1, E

′
2, E

′
4)

′

and use M = 2(p− 1).

Appendix B: Additional results

This section of the Appendix contains the Washington results for the estimates of λ1
τ and λ2

τ (for

τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}) in Tables 6 and 7, respectively.
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Table 6: Panel-Data Estimation Results for λ1
τ , Washington Data

Quantile regressions
10% 25% 50% 75% 90% OLS

Male child -30.857*** -28.675*** -25.584*** -23.708*** -16.161** -23.806***
(7.555) (5.394) (4.791) (5.602) (7.398) (4.460)

Age -9.694 -16.364 -4.497 -5.712 5.407 -12.165
(17.078) (10.905) (9.701) (10.350) (13.419) (9.570)

Age2 0.209 0.330* 0.158 0.028 -0.139 0.236
(0.289) (0.183) (0.170) (0.178) (0.229) (0.162)

Education -13.505 10.740 10.072 11.312 28.271** 11.474
(15.211) (11.101) (11.084) (8.528) (11.808) (8.409)

Education2 0.542 -0.242 -0.366 -0.372 -0.942* -0.350
(0.653) (0.457) (0.446) (0.376) (0.537) (0.356)

Married -5.964 3.108 -8.461 -3.034 -1.918 -6.866
(14.967) (9.891) (8.853) (10.138) (14.279) (8.428)

No prenatal care 101.967 93.632** 38.390 51.110 -72.802 36.052
(83.390) (45.514) (43.516) (46.157) (54.069) (38.342)

2nd-trimester care 25.291* 24.658** 30.234*** 12.346 19.901 20.927**
(14.700) (10.583) (8.535) (9.936) (13.153) (8.386)

3rd-trimester care 77.140** 21.917 18.521 16.725 1.121 31.732
(30.594) (22.977) (22.176) (25.450) (33.885) (20.161)

Smoke -102.682*** -60.559*** -51.977*** -79.282*** -71.567*** -70.500***
(16.452) (12.636) (9.859) (11.726) (14.822) (9.599)

Drink 7.639 -1.262 -22.244 -14.158 -13.765 -1.669
(30.612) (21.502) (21.802) (25.047) (28.027) (18.455)

# prenatal visits 6.566*** 7.227*** 6.795*** 6.901*** 6.709*** 5.597***
(1.464) (1.109) (0.868) (1.092) (1.292) (0.970)

Year of birth 8.375 2.200 -0.414 5.050 1.520 4.562
(6.496) (4.634) (4.226) (4.955) (5.995) (3.890)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1,000 bootstrap replications.

‘*’: significant at 10 percent level, double-sided (normal dist.).
‘**’: significant at 5 percent level, double-sided (normal dist.).
‘***’: significant at 1 percent level, double-sided (normal dist.).
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Table 7: Panel-Data Estimation Results for λ2
τ , Washington Data

Quantile regressions
10% 25% 50% 75% 90% OLS

Male child 2.687 -2.298 -9.551* -9.439* -7.372 -5.574
(7.933) (5.427) (5.007) (5.500) (7.163) (4.557)

Age 76.044*** 54.120*** 53.966*** 50.309*** 56.741*** 62.069***
(15.685) (11.456) (9.896) (10.407) (14.098) (9.483)

Age2 -1.338*** -0.959*** -0.934*** -0.824*** -0.946*** -1.081***
(0.253) (0.180) (0.162) (0.168) (0.226) (0.152)

Education -2.108 -4.658 -9.434 1.245 3.751 2.111
(20.292) (13.113) (10.205) (9.472) (12.075) (9.369)

Education2 0.370 0.528 0.522 0.042 0.090 0.177
(0.788) (0.525) (0.422) (0.401) (0.529) (0.385)

Married 17.254 7.329 6.918 4.698 10.464 7.531
(14.210) (12.002) (9.029) (10.503) (14.104) (8.767)

No prenatal care -99.718 -95.052* -100.908* -81.966 -123.891 -65.531
(100.990) (51.917) (54.525) (58.155) (97.169) (54.202)

2nd-trimester care 9.421 12.672 15.260 3.171 -6.068 11.843
(14.211) (10.296) (9.469) (10.085) (13.497) (8.158)

3rd-trimester care 6.158 -39.525 11.559 -21.768 -23.718 -8.217
(37.490) (26.726) (25.653) (23.503) (31.090) (20.345)

Smoke -84.991*** -83.882*** -69.294*** -73.756*** -56.860*** -78.492***
(16.275) (12.908) (11.112) (10.591) (15.561) (9.230)

Drink 15.707 3.962 6.114 -19.202 24.742 7.778
(37.664) (28.183) (19.269) (21.913) (31.972) (19.440)

# prenatal visits -7.520*** -4.268*** -3.311*** -3.317*** -3.327** -4.633***
(1.568) (1.121) (0.843) (0.902) (1.323) (0.946)

Year of birth 4.240 2.774 2.385 1.647 2.230 3.872
(6.531) (4.609) (4.556) (4.542) (6.494) (3.654)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1,000 bootstrap replications.

‘*’: significant at 10 percent level, double-sided (normal dist.).
‘**’: significant at 5 percent level, double-sided (normal dist.).
‘***’: significant at 1 percent level, double-sided (normal dist.).
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