Bivariate Ordered Probit

Ordered Probability Models

• Unobserved variable is typically specified as a linear function for each observation (*n* subscripting omitted), such that

$$z = \beta X + \varepsilon,$$

• where X is a vector of explanatory variables determining the discrete ordering for observation n, β is a vector of estimable parameters, and ε is a random disturbance.

Using this equation, observed ordinal data, y, for each observation are defined as,

$$y = 1$$
 if $z \le \mu 0$
 $y = 2$ if $\mu 0 < z \le \mu 1$
 $y = 3$ if $\mu 1 < z \le \mu 2$
 $y = ...$
 $y = I$ if $z \ge \mu_{I-1}$,

where μ are estimable parameters (referred to as thresholds) that define y, which corresponds to integer ordering, and I is the highest integer ordered response.

For the Bivariate case we have:

$$z_{i1} = \boldsymbol{\beta}_1 \mathbf{X}_{i1} + \boldsymbol{\varepsilon}_{i1},$$

$$z_{i2} = \boldsymbol{\beta}_2 \mathbf{X}_{i2} + \boldsymbol{\varepsilon}_{i2},$$

And we now take into account the facts that these equations are linked by:

$$\rho = \operatorname{Cor}(\varepsilon_{i1}, \varepsilon_{i2})$$

This is equivalent to a SURE model for non-continuous data.

Limdep commands are more involved:

- 1. Estimate two single equation models and store estimation results
- 2. Use single equation results to estimate a joint model and ρ

Assignment 4 (based on Example 14.1)

- A survey of 279 commuters conducted in the Seattle metropolitan area.
- The survey's intent was to gather information on commuters' opinions of high-occupancy vehicle (HOV) lanes (lanes that are restricted for use by vehicles with 2 or more occupants).
- Opinion questions have ordered opinion responses:

strongly disagree, disagree, neutral, agree, agree strongly

Questions we will address:

- 1. Existing HOV lanes are being adequately used: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly
- 2. HOV lanes should be open to all traffic: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly

With these questions we expect:

 $\rho = \text{Cor}(\varepsilon_{i1}, \varepsilon_{i2})$ will be **negative**

Limdep estimation procedure:

1. Existing HOV lanes are being adequately used (x28):

2. HOV lanes should be open to all traffic (x29):

```
oprobit;lhs=x29;rhs=one,....$ matrix;b2=b;mu2=mu$
```

3. Estimate the bivariate model:

```
oprobit;lhs=x28,x29
;rh1=one,dalone,x8,oldmen,college,x37
;rh2=one,dalone,x8,oldmen,college,x37
;start=b1,mu1,b2,mu2,0$
```

Here the "start" command has beta's and mu's from univariate models, and the "0" is the initial correlation coefficient, ρ

Assignment #4:

- Says to model X28 and X29
- **BUT:** You can experiment with any dual combination of:

- Also can consider recoding X27; X28; X28; X30; X31
 from 5 responses: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly
- **To 3:** 0 if strongly disagree or if disagree, 1 if neutral, 3 if agree or agree strongly

- X27 HOV lanes save all commuters time: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly
- X28 Existing HOV lanes are being adequately used: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly
- X29 HOV lanes should be open to all traffic: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly
- X30 Converting some regular lanes to HOV lanes is a good idea: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly
- X31 Converting some regular lanes to HOV lanes is a good idea only if it is done before traffic congestion becomes serious: 0 if strongly disagree, 1 if disagree, 2 if neutral, 3 if agree, 4 if agree strongly