
ZIP/ZINB - Count Data Models 

See Book Chapter 11 
 
 

 Count data consist of non-negative integer values  

 Examples:  

 number of driver route changes per week,  

 the number of trip departure changes per week,  

 drivers' frequency-of-use of ITS technologies over some time period,  

 the number of accidents observed on road segments per year.  

 Count data can be properly modeled by using a number of methods, the most 

popular of which are Poisson and negative binomial regression models. 



Poisson Regression Model 

 Consider the number of accidents occurring per year at various intersections in a 

city.   

 In a Poisson regression model, the probability of intersection i having yi accidents 

per year (where yi is a non-negative integer) is given by: 
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 Where:  

P(yi)  is the probability of intersection i having yi accidents per year 

λi   is the Poisson parameter for intersection i, which is equal to 

intersection i's expected number of accidents per year, E[yi].  



 Poisson regression models are estimated by specifying the Poisson parameter λi 

(the expected number of events per period) as a function of explanatory 

variables. 

 The most common relationship between explanatory variables and the Poisson 

parameter is the log-linear model, 
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 Where: 

Xi is a vector of explanatory variables and  

β is a vector of estimable coefficients.   



 In this formulation, the expected number of events per period is given by 
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 For model estimation, note the likelihood function is: 
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 So, with the Poisson equation, 
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 Since ( )i iEXP Xλ β= , 
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 Which gives the log-likelihood, 
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Poisson Regression Model Goodness of Fit Measures 

 The likelihood ratio test is a common test used to assess two competing models. 

It provides evidence in support of one model 



 The likelihood ratio test statistic is, 

-2[LL(βR) – LL (βU)] 

 where  

LL(βR) is the log-likelihood at convergence of the "restricted" model 

(sometimes considered to have all coefficients in β equal to 0, or just to 

include the constant term, to test overall fit of the model)  

LL(βU) is the log-likelihood at convergence of the unrestricted model.   

 This statistic is χ2 distributed with the degrees of freedom equal to the 

difference in the numbers of coefficients in the restricted an unrestricted 

model (the difference in the number of coefficients in the βR and the βU 

coefficient vectors).   



 Another measure of overall model fit is the ρ2 statistic.  The ρ2 statistic is, 

( )
( )

2 1
0

LL
LL

β
ρ = −  

 Where: 

LL(β) is the log-likelihood at convergence with coefficient vector β and  

LL(0) is the initial log-likelihood (with all coefficients set to zero). 

 The perfect model would have a likelihood function equal to one (all selected 

alternative outcomes would be predicted by the model with probability one, and 

the product of these across the observations would also be one) and the log-

likelihood would be zero giving a ρ2 of one  

 The ρ2 statistic will be between zero and one and the closer it is to one, the more 

variance the estimated model is explaining. 



 

Truncated Poisson Regression Model 
 

 

 Truncation of data can occur in the routine collection of transportation data.   

 Example, if the number of times per week an in-vehicle navigation system is 

used on the morning commute to work, during weekdays, the data are right 

truncated at 5, which is the maximum number of uses in any given week.   

 Estimating a Poisson regression model without accounting for this truncation 

will result in biased estimates of the parameter vector β, and erroneous 

inferences will be drawn.   

 Fortunately, the Poisson model is adapted easily to account for such truncation.  

The right-truncated Poisson model is written as: 
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 Where:  

P(yi) is the probability of commuter i using the system yi times per week,  

λi is the Poisson parameter for commuter i;  

mi is the number of uses per week;  

and r is the right truncation (in this case, 5 times per week). 

 

Negative Binomial Regression Model 

 Poisson distribution that restricts the mean and variance to be equal:  

E[yi] = VAR[yi]. 

 If this equality does not hold, the data are said to be under dispersed (E[yi] > 

VAR[yi]) or overdispersed (E[yi] < VAR[yi]), and the coefficient vector will be 

biased if corrective measures are not taken.   



 To account for cases when E[yi] ≠ VAR[yi], a negative binomial model is used.   

 The negative binomial model is derived by rewriting the λi equation such that,  

λi =  EXP(βXi + εi) 

 where EXP(εi) is a Gamma-distributed error term with mean 1 and variance α2.  

  The addition of this term allows the variance to differ from the mean as below, 

 

VAR[yi] = E[yi][1+ αE[yi]] = E[yi]+ αE[yi]2  

 

 The Poisson regression model is regarded as a limiting model of the negative 

binomial regression model as α approaches zero, which means that the 

selection between these two models is dependent upon the value of α.   



 The parameter α is referred to as the overdispersion parameter.  

 The negative binomial distribution has the form, 
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where Γ(.) is a gamma function.  This results in the likelihood function, 
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Zero-Inflated Poisson and Negative Binomial Regression Models 

 

 Zero events can arise from two qualitatively different conditions.   

1. One condition may result from simply failing to observe an event during the 

observation period.   

2. Another qualitatively different condition may result from an inability to ever 

experience an event.   

 Two states can be present, one being a normal count-process state and the other 

being a zero-count state.  

 A zero-count state may refer to situations where the likelihood of an event 

occurring is extremely rare in comparison to the normal-count state where event 

occurrence is inevitable and follows some know count process 



 Two aspects of this non qualitative distinction of the zero state are noteworthy: 

1. There is a preponderance of zeroes in the data—more than would be 

expected under a Poisson process.  

2. A sampling unit is not required to be in the zero or near zero state into 

perpetuity, and can move from the zero or near zero state to the normal count 

state with positive probability. 

 

 Data obtained from two-state regimes (normal-count and zero-count states) often 

suffer from overdispersion if considered as part of a single, normal-count state 

because the number of zeroes is inflated by the zero-count state. 



Zero-inflated Poisson (ZIP) 

 Assumes that the events, Y = (y1, y2,……,yn), are independent and the model is 

( ) ( )

( ) ( )

0 with probability 1

1
 with probability 

!

i i i i

y
i i i

i

y p p EXP

p EXP
y y

y

λ

λ λ

= + − −

− −
=

. 

where y is the number of events per period. 

 

Zero-inflated negative binomial (ZINB) 

 regression model follows a similar formulation with events, Y = (y1, y2,……, yn ), 

being independent and, 
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 where ( ) ( )1 1i iu α α λ= +   . 

 Zero-inflated models imply that the underlying data-generating process has a 

splitting regime that provides for two types of zeros.   

 The splitting process can be assumed to follow a logit (logistic) or probit 

(normal) probability process, or other probability processes.  



 A point to remember is that there must be underlying justification to believe 

the splitting process exists (resulting in two distinct states) prior to fitting this 

type of statistical model. There should be a basis for believing that part of the 

process is in a zero-count state. 

 To test the appropriateness of using a zero-inflated model rather than a traditional 

model, Vuong (1989) proposed a test statistic for non-nested models that is well 

suited for situations where the distributions (Poisson or negative binomial) are 

specified.  The statistic is calculated as (for each observation i),  
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 where:  

f1(yi|Xi) is the probability density function of model 1, and  



f2(yi|Xi) is the probability density function of model 2.   

 Using this, Vuongs' statistic for testing the non-nested hypothesis of model 1 

versus model 2 is (Greene, 2000; Shankar et al., 1997), 
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 Where:  m is the mean ( ( )
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 Vuongs' value is asymptotically standard normal distributed (to be compared to 

z-values), and  

 if V  is less than Vcritical (1.96 for a 95% confidence level), the test does not 

support the selection of one model over another.   



 Large positive values of V greater than Vcritical favor model 1 over model 2, 

whereas large negative values support model 2. 

 

  t-statistic of the NB overdispersion 
parameter α 

  < |1.96| > |1.96| 

Vuong statistic 
for ZINB(f1(.)) 
and NB(f2(.)) 
comparison 

< - 1.96 ZIP or Poisson 
as alternative to 

NB 

NB 

 > 1.96 ZIP ZINB 
 



 Because overdispersion will almost always include excess zeros, it is not 

always easy to determine whether excess zeros arise from true overdispersion 

or from an underlying splitting regime.  

 This could lead one to erroneously choose a negative binomial model when the 

correct model may be a zero-inflated Poisson.  

 The use of a zero-inflated model may be simply capturing model 

mispecification that could result from factors such as unobserved effects 

(heterogeneity) in the data. 



--> poisson;lhs=x5 
    ;rhs=one,sr520,x14,x15,x17 
    ;zip 
    ;limit=6;truncation;upper$ 
 
Normal exit from iterations. Exit status=0. 
 
 +----------------------------------------------------------------------+ 
 | Zero Altered Poisson      Regression Model                           | 
 | Logistic distribution used for splitting model.                      | 
 | ZAP term in probability is F[tau x ln LAMBDA]                        | 
 | Comparison of estimated models                                       | 
 |             Pr[0|means]       Number of zeros        Log-likelihood  | 
 | Poisson          .56606   Act.=   126 Prd.=   115.5      -226.14085  | 
 | Z.I.Poisson      .46033   Act.=   126 Prd.=    93.9      -199.33319  | 
 | Note, the ZIP log-likelihood is not directly comparable.             | 
 | ZIP model with nonzero Q does not encompass the others.              | 
 | Vuong statistic for testing ZIP vs. unaltered model is      8.2473   | 
 | Distributed as standard normal. A value greater than                 | 
 | +1.96 favors the zero altered Z.I.Poisson model.                     | 
 | A value less than -1.96 rejects the ZIP model.                       | 
 +----------------------------------------------------------------------+ 
 



 
poisson;lhs=x5 
    ;rhs=one,sr520,x14,x15,x17 
    ;rh2=one,x17 
    ;zip=normal 
    ;rpm;pts=200;halton 
    ;fcn=x14(n),sr520(n) 
    ;limit=6;truncation;upper$ 



+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Nonrandom parameters 
 Constant|     .71491800       .69105613     1.035   .3009 
 X15     |    -.01954401       .02227875     -.877   .3804   7.15196078 
 X17     |     .11296038       .31458872      .359   .7195   1.61078431 
---------+Means for random parameters 
 X14     |    -.26808326       .17372280    -1.543   .1228    .62254902 
 SR520   |    -.96019265       .31028701    -3.095   .0020    .13725490 
---------+Diagonal elements of Cholesky matrix 
 X14     |     .12610375       .11457337     1.101   .2711 
 SR520   |     .51165140       .24727997     2.069   .0385 
---------+Below diagonal elements of Cholesky matrix 
 lSR5_X14|    -.55832649       .26574401    -2.101   .0356 
---------+Variables in ZERO regime logit probability 
 Constant|    12.2193479      2.72660999     4.482   .0000 
 X17     |   -7.82774650      1.84263489    -4.248   .0000      .000000 
 
Implied covariance matrix of random parameters 
Matrix Var_Beta has  2 rows and  2 columns. 
               1             2 
        +---------------------------- 
       1|     .01590      -.07041 
       2|    -.07041       .57352 



 
 

Implied standard deviations of random parameters 
Matrix S.D_Beta has  2 rows and  1 columns. 
               1 
        +-------------- 
       1|     .12610 
       2|     .75731 
 
Matrix Cor_Beta has  2 rows and  2 columns. 
               1             2 
        +---------------------------- 
       1|    1.00000      -.73725 
       2|    -.73725      1.00000 


