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a  b  s  t  r  a  c  t

For  many  years,  to reduce  the  crash  frequency  and  severity  at high-speed  signalized  intersections,  war-
ning  flashers  have  been  used  to alert  drivers  of  potential  traffic-signal  changes.  Recently,  more  aggressive
countermeasures  at such  intersections  include  a speed-limit  reduction  in  addition  to  warning  flashers.
While  such  speed-control  strategies  have  the  potential  to further  improve  the crash-mitigation  effec-
tiveness  of warning  flashers,  a rigorous  statistical  analysis  of  crash  data  from  such  intersections  has  not
been undertaken  to date.  This  paper  uses  10-year  crash  data  from  28  intersections  in Nebraska  (all  with
intersection  approaches  having  signal-warning  flashers;  some  with  no  speed-limit  reduction,  and  the
others  with  either  5  mi/h  or 10  mi/h  reduction  in  speed  limit)  to estimate  a  random  parameters  negative
binomial  model  of  crash  frequency  and a nested  logit  model  of  crash-injury  severity.  The  estimation
findings  show  that, while  a wide  variety  of  factors  significantly  influence  the frequency  and  severity  of
crashes,  the  effect  of the  5 mi/h  speed-limit  reduction  is ambiguous—decreasing  the  frequency  of  crashes
on some  intersection  approaches  and  increasing  it on  others,  and  decreasing  some  crash-injury  sever-
ities and  increasing  others.  In contrast,  the  10  mi/h  reduction  in speed  limit  unambiguously  decreased
both  the  frequency  and injury-severity  of crashes.  It is speculated  that,  in the  presence  of  potentially
heterogeneous  driver  responses  to decreased  speed  limits,  the  smaller  distances  covered  during  reac-
tion time  at  lower  speeds  (allowing  a  higher  likelihood  of  crash  avoidance)  and  the  reduced  energy  of

crashes  associated  with  lower  speed  limits  are  not  necessarily  sufficient  to  unambiguously  decrease  the
frequency  and  severity  of  crashes  when  the  speed-limit  reduction  is  just  5  mi/h.  However,  they  are suffi-
cient to  unambiguously  decrease  the frequency  and  severity  of  crashes  when  the  speed-limit  reduction
is 10  mi/h.  Based  on this  research,  speed-limit  reductions  in  conjunction  with  signal-warning  flashers
appear  to  be  an  effective  safety  countermeasure,  but  only  clearly  so  if the  speed-limit  reduction  is  at  least
10 mi/h.
. Introduction

Traffic-safety data indicate that greater than 20% of all traf-
c fatalities in the United States occur at intersections. In 2010
lone, more than 6700 fatalities occurred at intersections in the
.S. (National Highway Traffic Safety Administration, 2012). While
any factors determine the likelihood of intersection crashes in

eneral, and fatal crashes in particular, signalized intersections

ith high approach speeds are particularly notorious for generating

atal crashes. At such high-speed intersections, studies have shown
hat the frequency and injury-severity of crashes can be reduced by
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countermeasures that involve speed-limit reductions on intersec-
tion approaches and/or the implementation of warning flashers to
provide drivers with additional time to make safer intersection-
related decisions (Antonucci et al., 2004).

With regard to speed-limit reductions in general, many stud-
ies have been conducted to test the effectiveness of changes in the
speed limits due to regulations/laws, variable speed limits, dynamic
message signs, and special transition zones (Buddemeyer et al.,
2010; Cruzado and Donnell, 2010; Monsere et al., 2005; Parker,
1997; Son et al., 2009; Towliat et al., 2006; van den Hoogen and
Smulders, 1994). Findings from these studies suggest that arbitrary
changes in speed limit (changes without a reason that is immedi-
ately obvious to drivers) have little impact upon driver behavior,

and may  result in low compliance. However, a speed reduction for
certain special cases, such as dangerous curves, or adverse weather
conditions, has often been shown to lead to a significant reduction
in operational speeds, even though the magnitude is typically less
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time, flasher time is considered insufficient if actual flasher time
is less than the time required for the drivers driving at signal-
approach speed limit traveling from the flasher to the stop line
Z. Wu  et al. / Accident Analy

han the reduction of the posted speed limit. In addition, lowering
he speed limit does not always improve safety because the speed-
imit reduction may  be too modest for the larger crash-avoidance
istances available to drivers and the reduced impact energies of

ower-speed crashes to have a significant effect on the frequency
nd severity of crashes. Also, there is the possibility that some
rivers may  continue to travel at a speed that they perceive to be
easonable and safe while others may  attempt to comply with the
educed posted speed limit—resulting in an increase in speed vari-
nce that can completely offset the benefits of the reduced speed
imit or in some cases actually result in more dangerous traffic
onditions. For example, Boyle and Mannering (2004) found in a
imulator study that drivers given in-vehicle speed recommen-
ations for adverse weather slowed down substantially relative
o those drivers who were not given such in-vehicle information.
owever, these in-vehicle-information drivers also sped up when

he adverse conditions passed, to make up for lost time, caus-
ng high variances in speed during and after the hazard. And, in
ther work, Malyshkina and Mannering (2008) found that increas-
ng speed limits on interstate highways by 5 mi/h in Indiana did not
esult in an increase in crash-injury severities, partly because of the
ecline in speed variance at the higher speed limit.

In contrast to the speed limit reductions, signal-warning flashers
re designed to alert drivers of forthcoming yellow signal indi-
ation at the intersection, giving them more time to adjust their
peed accordingly. There have been a number of research efforts
hat have studied the effectiveness of these signal-warning flash-
rs. For example, a study by Appiah et al. (2011) concluded that such
ignal-warning flashers resulted in a 8% reduction in the number of
rashes. In other work, Burnett and Sharma (2011) found that the
ocation and timing of signal-warning flashers were key determi-
ants in the risk of severe deceleration and/or red-light running at
igh-speed intersections—both of which are fundamental factors

n determining the frequency and severity of crashes. However, to
ate, the authors are not aware of any studies that have consid-
red the joint effects of speed-limit reductions and signal-warning
ashers at high-speed signalized intersections.

In terms of the implementation of speed-limit reductions and
ignal-warning flashers at high-speed intersections, a survey of
ight U.S. states (Nebraska, Kansas, Iowa, Missouri, South Dakota,
yoming, Colorado and California) indicated that they all used

ignal-warning flashers at high-speed intersections, and that the
pplication of this technology is well supported by guidelines pro-
ided in the Manual of Uniform Traffic Control Devices (Federal
ighway Administration, 2009). In contrast, guidelines for imple-
enting speed-limit reductions at high-speed intersections do not

xist, and states may  not apply reductions unless there are sig-
ificant intersection-related safety concerns, such as a history of

requent and/or severe-injury crashes or sight-distance restric-
ions.

The presence of signal-warning flashers further complicates the
ssue surrounding the necessity and effectiveness of speed-limit
eductions, and can produce a range of possible outcomes. The
xpected outcome would be that reduced speed limits would be
ffective in reducing operating speeds in the presence of signal-
arning flashers and thus enhancing overall safety. However, there

s the possibility of more complicated effects such as heterogeneous
river compliance with the reduced speed limit. Such heterogene-

ty may  be more likely to occur in the presence of signal-warning

ashers (as drivers may  differ greatly in their assessment of the
afety benefits provided by both mitigation measures) and the net
ffect of both of these countermeasures may  be compromised.1 This

1 One key effect here is the possibility that the heterogeneous driver compliance
ill  result in an increase in speed variance. However, this does not appear to be the
 Prevention 54 (2013) 90– 98 91

paper will investigate the safety effects of speed-limit reductions at
high-speed signalized intersections with signal-warning flashers,
by considering their effects on crash frequencies and severities.

2. Empirical setting

The crash dataset available for this study consists of crash data
from 28 intersections in Nebraska, collected over a ten-year period
from January 1, 2001 to December 31, 2010. As done in previous
research (for example, Poch and Mannering, 1996), each intersec-
tion is broken up into approaches (lane groups at intersections
such as northbound lanes, southbound lanes, eastbound lanes and
westbound lanes) meaning that the typical intersection would
generate 4 observations. However, consideration is only given to
intersection approaches on the primary highways (the higher vol-
ume  highways) with signal-warning flashers—which gives a total
of 56 approaches in the dataset. The crash data were grouped for
each approach of the primary highway at each intersection and
43 of the 56 approaches had no reduction in speed limit (i.e.,
with 0 mi/h speed limit drop); nine approaches had a 5 mi/h speed
limit drop; and four approaches had a 10 mi/h speed limit drop.
Here, the uneven number of approaches for 0 mi/h reduction and
5 mi/h reduction resulted from one intersection having asymmet-
rical signal approach speed; its northbound approach had a 0 mi/h
reduction while its southbound approach had a 5 mi/h reduction.

The number of crashes occurring in each year is considered
for each observation so the 56 approaches produce 560 observa-
tions because each approach has 10 years of crash data. However,
two intersections had a history of stop-controlled approaches, as
opposed to signalized approaches, within the 10-year study period.
Thus, with these stop-controlled observations removed, there were
536 observations for the approach-based annual crash-frequency
model.

With regard to the severity of crashes, the dataset includes
detailed police-reported crash data from 635 crashes that occurred
during the study period. Each crash was  documented together with
its crash characteristics, driver characteristics, and location-specific
traffic characteristics including traffic control and traffic flow char-
acteristics.

The main variables of interest were traffic-control characteris-
tics including yellow time, flasher time, and speed-limit reductions,
which were studied by defining indicator variables in statistical
models. The descriptive statistics of the variables found to be sig-
nificant in forthcoming crash frequency and crash severity models
are provided in Table 1.

In Table 1, for the percentage of intersections with sufficient yel-
low time, yellow time is considered sufficient if the actual yellow
time is greater than the suggested yellow time which is calcu-
lated as tr + S85/(2a + 0.644G), where tr is the standard assumed
perception-reaction time (1 s), S85 is the 85th percentile of speed in
ft/s, a is the standard assumed vehicle deceleration (11.2 ft/s2) and
G is the grade in percent (see Institute of Transportation Engineers,
1985; Mannering and Washburn, 2013). Also, for the percentage of
intersection approaches with an insufficient signal-warning flasher
case. For example, Wu et al. (2013) showed, by considering vehicle speeds before the
speed-limit reduction and after, that the impact of a 10 mi/h speed-limit reduction
(from 65 mi/h to 55 mi/h) at high-speed intersections with signal-warning flashers
in Nebraska (based on speed data collected from some of the same intersection
approaches considered in the current paper) reduced mean operating speeds by
3.8 mi/h without significantly changing the standard deviation of speeds.
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Table 1
Descriptive statistics of crash-related variables.a

Variable Value

Crash-frequency data
Average annual crash frequency on intersection approaches (std. dev.) 1.13 (1.42)
Average percentage of truck volume on intersection approaches (std. dev.) 7.69 (6.12)
Average daily travel in vehicles per lane on intersection approaches (std. dev.) 1851.95 (911.29)
Average percentage of left-turn volume on intersection approaches (std. dev) 12.63 (13.79)
Percentage of intersection approaches with divided medians 83.21
Percentage of intersection approaches with a 5 mi/h reduction in speed limit 16.79
Percentage of intersection approaches with a 10 mi/h reduction in speed limit 7.46
Percentage of intersection approaches with sufficient yellow time (see text for definition). 33.58
Percentage of intersection approaches with an insufficient signal-warning flasher time (see text for definition) 70.15

Crash-severity data
Average daily travel in vehicles per lane on intersection approaches (std. dev.) 2028.43 (921.38)
Average percentage of truck volume on intersection approaches (std. dev.) 7.42 (6.40)
Average percentage of left-turn volume on intersection approaches (std. dev.) 11.14 (11.99)
Percentage of intersection approaches with divided medians 87.87
Percentage of intersection approaches with a 5 mi/h reduction in speed limit 13.86
Percentage of intersection approaches with a 10 mi/h reduction in speed limit 5.98
Percentage of intersection approaches with an insufficient flasher time 26.78
Percentage of intersection approaches with exclusive left turn lanes 94.49
Percentage of crashes classified as out-of-control crashes 5.2
Percentage of crashes classified as angle crashes 60.78
Percentage of crashes classified as head-on crashes 3.94
Percentage of crashes classified as rear-end crashes 30.08
Percentage of crashes classified as property damage only crashes 45.36
Percentage of crashes classified as possible-injury crashes 24.72
Percentage of crashes classified as visible-injury crashes 18.74
Percentage of crashes classified as incapacitating injury crashes 9.92
Percentage of crashes classified as fatality crashes 1.26

a Variables will have different values in the crash-frequency and crash-severity data because the units of observation are different. In the crash-frequency case the number
of  crashes on individual intersection approaches (the unit of observation) is considered, whereas in crash severity each individual crash (the unit of observation) is considered.
Substantial differences in the approach-specific values (such as traffic volume, speed-limit reductions, etc.) between the two data bases reflect the fact that the number of
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ndividual crashes occurring on specific approaches can substantially change values i
nd  low crash-frequency approaches will be under represented (this is in contrast
er  approach per year).

time required is the distance to the stop line in feet divided by the
peed limit of the approach in ft/s).

. Methodology

To assess the safety impacts of signal-warning flashers and
peed control at high-speed signalized intersections, consideration
ill be given to the frequency of crashes and then to the severity

f crashes once a crash has occurred. Turning first to the analy-
is of crash frequency, count-data modeling techniques have been
hown to be an appropriate methodological approach because the
umber of crashes assigned to an intersection approach is a non-
egative integer (see Lord and Mannering, 2010). These, count data
re generally modeled with a Poisson regression or its derivatives
hich include the negative binomial and zero-inflated models (see

hankar et al., 1997; Lee and Mannering, 2002; Lord and Mannering,
010; Washington et al., 2011). For the basic Poisson model, the
robability P(ni) of intersection approach i having ni crashes per
ear is,

(ni) = EXP(−�i)�
ni
i

ni!
(1)

here �i is the Poisson parameter for intersection approach i, which
s intersection approach i’s expected number of crashes, E[ni]. Pois-
on regression specifies the Poisson parameter �i (the expected
umber of accidents) as a function of explanatory variables by using
he function,
i = EXP(ˇXi) (2)

here Xi is a vector of explanatory variables and � is a vector of
stimable parameters (Washington et al., 2011).
njury-severity data since high crash-frequency approaches will be over represented
 crash-frequency where each approach has “equal” representation with one value

As is well known in the literature (Lord and Mannering, 2010),
a Poisson model may  not always be appropriate because the
Poisson distribution restricts the mean and variance to be equal
(E[ni] = VAR[ni]). Crash-frequency data are typically overdispersed
(E[ni] � VAR[ni]) so estimation with a Poisson model will result
biased parameter estimates. To account for this possibility, the
negative binomial model is often used. This model is derived by
rewriting,

�i = EXP(ˇXi + εi) (3)

where EXP(εi) is a Gamma-distributed error term with mean 1 and
variance ˛2. The addition of this term allows the variance to dif-
fer from the mean with VAR[ni] = E[ni][1 + ˛E[ni]] = E[ni] + ˛E[ni]2.
The negative binomial probability density function is (Washington
et al., 2011):

P(ni) =
(

1/˛

(1/˛)  + �i

)1/˛ �
[
(1/˛)  + ni

]
� (1/˛)ni!

(
�i

(1/˛)  + �i

)ni

(4)

where � (.) is a gamma  function. Note that the Poisson regres-
sion is a limiting model of the negative binomial regression as

 ̨ approaches zero. Thus, if  ̨ (often referred to as the dispersion
parameter) is significantly different from zero, the negative bino-
mial is appropriate and if it is not, the Poisson model is appropriate
(Washington et al., 2011).

Random parameters can be introduced to account for possible
heterogeneity (unobserved factors that may  vary across intersec-
tions). In this case the model is structured so that each of the 28
intersections (each of which have two  approaches) can have their

own  ̌ (note that, with ten years of data and typically two of the
four intersection approaches having the signal-warning flashers,
a typical intersection generates 20 observations). This is in con-
trast to the traditional random parameters approach where each
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estimable parameters, and Pn(j|i) is the probability of crash n having
injury severity j conditioned on the injury severity being in injury-
severity category i, J is the conditional set of outcomes (conditioned

3 As pointed out in Savolainen et al. (2011), ordered probability models are partic-
ularly susceptible to under-reporting of less severe crashes and such models place
an  often unrealistic restriction on the effect variables can have on crash-injury out-
Z. Wu  et al. / Accident Analy

bservation (in this case each year/intersection-approach combi-
ation) would get their own ˇ. The advantage of having a single
arameter for the approaches in the same intersection (as opposed
o allowing each approach to have its own parameter) is that the

odel takes into account additional information (the fact that the
pproaches are from the same intersection and thus are likely to
hare many of the same unobserved effects). This additional infor-
ation is traded off against the restriction being placed on the

arameters (that they are constrained to be the same for each
ntersection approach in a given intersection). Subsequent model
stimations clearly show that constraining the approach parame-
ers to be the same for each intersection is statistically justified.2

o develop such a random-parameters model, individual estimable
arameters are written as (see Greene, 2007; Anastasopoulos and
annering, 2009; Washington et al., 2011),

j =  ̌ + ϕj (5)

here ϕj is a randomly distributed term for each intersection j,
nd it can take on a wide variety of distributions such as the nor-
al, log-normal, logistic, Weibull, Erlang, and so on. Given Eq. (5),

he Poisson parameter �i becomes �i|�j = EXP(�Xi + εi) in the neg-
tive binomial model with the corresponding probabilities P(ni|�j)
see Eq. (4)). The log-likelihood function for the random parameters
egative binomial in this case can be written as,

L =
∑
∀i

ln

∫
ϕj

g(ϕj)P(ni|ϕj)dϕj (6)

here g(.) is the probability density function of the ϕj.
Because maximum likelihood estimation of the random-

arameters negative binomial models is computationally cumber-
ome (due to the required numerical integration of the negative
inomial function over the distribution of the random param-
ters), a simulation-based maximum likelihood method is used
the estimated parameters are those that maximize the simulated
og-likelihood function while allowing for the possibility that the
ariance of ϕj for intersection-level parameters is significantly
reater than zero). The most popular simulation approach uses
alton draws, which has been shown to provide a more efficient
istribution of draws for numerical integration than purely random
raws (see Greene, 2007).

Finally, to assess the impact of specific variables on the mean
umber of crashes, marginal effects are computed (see Washington
t al., 2011). Marginal effects are computed for each observation
nd then averaged across all observations. The marginal effects give
he effect that a one-unit change in x has on the expected number
f crashes at each approach, �i.

With regard to the injury-severity of crashes given that a crash
as occurred, discrete outcome models have been widely used. In
his study, possible injury outcomes (the police-reported injury sta-
us of the most severely injured vehicle occupant in the crash)
nclude: no injury, possible injury, visible injury, incapacitating
njury, and fatality. To address this type of discrete outcome data,
ver the years researchers have used a variety of methodologi-
al approaches including ordered probability models, multinomial
ogit models, nested logit models, mixed (random parameters) logit
odels, dual-state multinomial logit models and finite-mixture
andom-parameter models (Shankar et al., 1996; Duncan et al.,
998; Chang and Mannering, 1999; Khattak, 2001; Kockelman and

2 The model estimation that constrained the parameters of approaches in the
ame intersection to be identical had a log-likelihood at convergence (LL(�intersection))
f −732.05 whereas the model that allowed all approaches to have their own param-
ter converged at (�approach) −760.67. The substantially higher value of LL(�intersection),
learly suggests that constraining the parameters of approaches on the same inter-
ection to be identical provides a superior statistical fit.
 Prevention 54 (2013) 90– 98 93

Kweon, 2002; Abdel-Aty, 2003; Yamamoto and Shankar, 2004;
Eluru et al., 2008; Savolainen and Mannering, 2007; Milton et al.,
2008; Malyshkina and Mannering, 2009; Christoforou et al., 2010;
Kim et al., 2010; Anastasopoulos and Mannering, 2011; Morgan
and Mannering, 2011; Ye and Lord, 2011; Patil et al., 2012; Xiong
and Mannering, 2013). A review of crash-injury severity models
and methodological approaches can be found in Savolainen et al.
(2011). Studies have shown that the choice of one methodological
approach over another is often data dependent, although the para-
metric restrictions of the ordered probability models can preclude
them as a feasible alternative (Savolainen et al., 2011).3

After extensive consideration of the standard multinomial logit,
mixed logit and nested logit (Savolainen et al., 2011), the nested
logit model provided the best overall statistical fit in current study.4

The nested logit model is a generalization of the standard multi-
nomial logit model that overcomes the restriction that requires
the assumption that the error terms are independently distributed
across injury outcomes. As shown in past work, this independence
may  not always be the case if some crash-injury severity levels
share unobserved effects (Savolainen and Mannering, 2007). For
example, with the five injury categories that we will consider in
this paper (no injury, possible injury, visible injury, incapacitating
injury and fatality),5 it is possible that adjacent injury-severity cat-
egories may  share unobserved effects that relate to lower-impact
collisions, thus violating the assumption that the error terms are
independently distributed across outcomes, an assumption needed
for the derivation of the standard multinomial logit model (see
McFadden, 1981). The nested logit model deals with possible corre-
lation of unobserved effects among discrete outcomes by grouping
outcomes that share unobserved effects into conditional nests.
The outcome probabilities are determined by differences in the
functions determining these probabilities with shared unobserved
effects canceling out in each nest. The nested logit model has the
following structure for crash n resulting in injury outcome i (see
McFadden, 1981; Washington et al., 2011):

Pn(j|i) = EXP[ˇj|iXjn]∑
∀JEXP[ˇJ|iXJn]

(7)

LSin = LN[
∑

∀J
exp(ˇJ|iXJn)] (8)

Pn(i) = EXP[ˇiXin + �iLSin]∑
∀IEXP[ˇIXIn + �ILSIn]

(9)

where Pn(i) is the unconditional probability of crash n having
injury outcome i, X’s are vectors of measurable characteristics that
determine the probability of injury outcomes, �’s are vectors of
comes. This is because traditional ordered probability models cannot allow a variable
to  simultaneously decrease (or simultaneously increase) the probability of the low-
est and highest severity levels (it should be noted that some recent work by Eluru
et  al. (2008) develops a generalized ordered probability model that relaxes the vari-
able restriction of standard ordered probability models). See Savolainen et al. (2011),
for  further discussion of this point.

4 The mixed logit model did not produce any statistically significant random
parameters at the 95% confidence level (only one parameter was found to be signif-
icant even at the 90% confidence level). As will be shown, the standard multinomial
logit could be statistically rejected relative to the nested logit model.

5 These severity levels follow the traditional “KABCO” scale: fatal injury or killed
(K),  incapacitating injury (A), non-incapacitating (B), possible injury (C), and prop-
erty damage only (O).
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Fig. 1. Nested logit structure of the crash-injury severity model.

n i), I is the unconditional set of outcome categories, LSin is the
nclusive value (logsum), and �i is an estimable parameter.

For an example of a nested structure, consider a model that has
orrelation of unobserved effects among the intermediate injury
utcomes of possible injury and visible injury. In this case, in
q. (9),  the outcome categories i would include no injury, inca-
acitating injury, fatal injury, and a “lower intermediate injury”
ategory (which would determine the unconditional probability of
he crash resulting in a possible- or visible-injury outcome). The
ower-intermediate-injury category (Pn(i) in Eq. (9)) would include

 LSin as the inclusive value (logsum) which would be the denom-
nator from the binary logit model estimated in Eq. (7) (as shown
n Eq. (8))  with possible outcomes of possible injury and visible
njury conditioned on the fact that the crash resulted in a lower-
ntermediate-injury category (that is, possible injury and visible
njury). Visually this model structure is shown in Fig. 1.

Estimation of a nested model logit model is readily undertaken
sing a full information maximum likelihood approach that ensures
hat variance-covariance matrices are properly estimated (this is
n contrast to older sequential maximum likelihood estimation
pproach which underestimated the variance–covariance matri-
es resulting in an over estimation of the t-statistics of parameter
stimates, see Greene, 2007 for additional details).

In comparing nested and un-nested logit models, it is impor-
ant to note that if the estimated value of �i is not significantly
ifferent from 1, the assumed shared unobserved effects in the

ower-nest are not significant and the nested model reduces to a
imple multinomial logit model (see Eqs. (8) and (9) with �i’s = 1).

As was the case for the random-parameters negative bino-
ial model, to assess the impact of specific variables on the

rash-severity probabilities, marginal effects are computed for
ach observation and then averaged across all observations (see
ashington et al., 2011). Here, the marginal effects give the impact

hat a one-unit change in an explanatory variable, xi, has on the
robability of crash injury-severity outcome i.

. Estimation results: crash frequency

The parameter estimation results and the corresponding aver-
ge marginal effects are shown in Table 2. Table 2 shows that the
andom-parameters negative binomial model estimation includes
 significant fixed parameters and 4 significant random parameters.
verall model fit is quite good as indicated by the log-likelihood at
onvergence (−732.05) which shows a very substantial improve-
ent relative to the log-likelihood with only the constant included
 Prevention 54 (2013) 90– 98

in the model (−1104.04). The random parameter model esti-
mated is also superior to the simple fixed parameter model which
produced a much lower log-likelihood at convergence of −797.77.
Finally, the statistical significance of the dispersion parameter, ˛,
shows that it significantly different from zero and that the nega-
tive binomial model is appropriate relative to the simple Poisson
model.

Turning to specific parameter estimates, higher truck percent-
ages produce a positive parameter indicating that an increase
in truck percentages increases the frequency of crashes. This is
expected given that the poorer braking performance of trucks can
be expected to be problematic at high-speed intersections. The
marginal effects in Table 2 show that a 1% increase in truck percent-
age increases the mean number of crashes per year on the approach
by 0.0142.

Also, as expected, increases in the traffic volume per lane
increase the frequency of crashes on intersection approaches. Here,
marginal effects show that an increase in average traffic volume of
1000 vehicles per day per lane will increase the expected number
of crashes by 0.24 per year (see Table 2). As this number indicates,
any substantial increase in volume can be a real safety concern.

Intersection approaches with divided medians were found to
have higher crash frequencies with marginal effects showing that
a divided-median intersection approach has a 0.81 higher annual
crash frequency relative to undivided median approaches. Here,
the median space between opposing approaches is likely causing a
problem by increasing the time required for left-turning vehicles,
and vehicles traveling through the intersection on the minor road,
to cross the approach lanes and median to clear the intersection.
Sight distance may  also be an issue with divided medians in some
cases.

The estimated parameter for the insufficient signal-warning
flasher-time indicator (see earlier definition) was found to be a
normally distributed random parameter with a slightly positive
but insignificant effect on average (the parameter mean). However,
this parameter estimate did have a highly statistically significant
standard deviation. Given the estimated standard deviation, the
mean, and the normal distribution of parameters, we find that the
presence of insufficient flasher-time increases crash frequencies
at 57% of intersections and decreases crash frequencies at 43% of
intersections. The variation in this parameter about zero suggests
that the influence of insufficient signal-warning flasher times varies
considerably among intersection approaches and this may  be due
to, among other factors, how local drivers react to flashers. Because
a large percentage of drivers on the intersection approaches are
likely regular users, this finding may  be picking up site-specific
anomalies among intersections or the possibility that the driver
populations adjust to minor variations in signal-warning flashing
times in different ways and this would explain the plus/minus vari-
ation in this parameter estimate.

The sufficient yellow-time indicator (see earlier definition) also
resulted in a normally distributed random parameter with a statis-
tically insignificant mean and a significant standard deviation. In
this case, intersections with sufficient yellow times had reduced
crash frequencies 55% of the time and increased crash frequen-
cies 45% of the time. Once again this heterogeneous effect across
intersections may  be the result of site-specific anomalies and/or
adaptive driver behavior.

The percentage of total approach traffic making left turns also
produced a normally distributed random parameter with a negative
mean (although statistically insignificant from zero). The distribu-
tion of parameters is such that higher left-turn percentages have

a negative effect on crash frequencies at 59% of the intersections
and a positive effect on crash frequencies at 41% of the intersec-
tions. It is again speculated that this variation is likely the result of
site-specific anomalies and diver adaptation.
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Table 2
Model estimation results for random parameters negative binomial model of intersection crash frequency (all random parameters are normally distributed).

Variable Parameter
estimate

t-Stat. Average
marginal effect

Constant −1.91 −7.74
Truck percentage 0.0193 2.07 0.0142
Average daily travel per lane (in thousands of vehicles) 0.33 5.51 0.24
Divided median indicator (1 if intersection approach has a divided median, 0

otherwise)
1.11 7.24 0.81

Insufficient signal-warning flasher-time indicator (1 if the actual signal-warning
flasher time is less than the time required for the drivers driving at signal-approach
speed limit traveling from the flasher to the stop line, 0 otherwise) (standard
deviation of parameter distribution)

0.14 (0.80) 1.31 (10.99) 0.10

Sufficient yellow time indicator (1 if the actual yellow time is greater than the
suggested yellow time, 0 otherwise; see text for definition) (standard deviation of
parameter distribution)

−0.09 (0.70) −0.77 (6.86) −0.06

Percentage of approach traffic making left turns (standard deviation of parameter
distribution)

−0.0051(0.0231)  −1.20 (6.67) −0.0037

5  mi/h speed-limit reduction indicator (1 if speed limit is reduced by 5 mi/h, 0
otherwise) (standard deviation of parameter distribution)

−0.32 (0.72) −2.24 (4.91) −0.23

10  mi/h speed-limit reduction indicator (1 if speed limit is reduced by 10 mi/h, 0
otherwise)

−0.47 −2.00 −0.34

Dispersion parameter, ˛ 8.19 1.98

v
fl
t
o

T
N
i

s
i

Number of observations 

Log-likelihood with constant only 

Log-likelihood at convergence 

Turning now to the specific variables of interest, the effect of

arious reductions in speed limit in the presence of signal-warning
ashers, we find that a 5 mi/h reduction results in a normally dis-
ributed random parameter with a statistically significant mean
f −0.32 and a standard deviation of 0.72. This suggests that the

able 3
ested logit model for crash severity at high speed signalized intersections. Severity levels

njury (lower nest), INI = incapacitating injury (upper nest), F = fatality (upper nest), and L

Severity level Variable

Lower nest
PI Rear-end crash indicator (1 if the crash was  a rear-end crash, 0 

Left-turn lane indicator (1 if left-turn lane is present on the inte

VI  Constant 

5  mi/h speed-limit reduction indicator (1 if speed limit is reduc
Truck  percentage
Average daily travel per lane (in thousands of vehicles) 

At-fault driver-age indicator (1 if the at-fault driver was more t
At-fault male-driver indicator (1 if the at-fault driver was male,
Angle  crash indicator (1 if the crash was an angle crash, 0 other

Upper nest
NI Constant 

Head-on indicator (1 if the crash was  head-on crash, 0 otherwis
Divided median indicator (1 if intersection approach has a divid
Sufficient yellow time indicator (1 if the actual yellow time is gr

time 0 otherwise; see Table 1 for definition)
10  mi/h speed-limit reduction indicator (1 if speed limit is redu
Multiple-vehicle indicator (1 if crash involved more than two v

LII Percentage of approach traffic making left turns 

Divided median indicator (1 if intersection approach has a divid
Inclusive value (logsum) 

InI Constant 

At-fault driver drinking indicator (1 if the at-fault driver had be
Angle  crash indicator (1 if the crash was an angle crash, 0 other

F  Constant 

Average daily travel per lane (in thousands of vehicles) 

At-fault driver drinking indicator (1 if the at-fault driver had be

Number of observations 

Log-likelihood at zero, LL(0) 

Log-likelihood at convergence, LL(ˇ) 

McFadden �2 (1 − LL(ˇ)/LL(0)) 

a As opposed to all other t-statistics which are computed as  ̌ − 0 (since we  are intere
tandard error, the inclusive value t-statistic is computed as  ̌ − 1 divided by the standard
s  valid as opposed to a traditional multinomial logit.
536
−1104.04
−732.05

5 mi/h speed-limit reduction reduces crash frequencies at 67% of

intersections and increases them at 33% of intersections. Here,
among potentially other factors relating to site-specific conditions,
there is the possibility that the 5 mi/h speed-limit reduction is sim-
ply not sufficiently large enough to unambiguously decrease the

 (see Fig. 1): NI = no injury (upper nest); PI = possible injury (lower nest), VI = visible
II = lower intermediate injury (upper nest).

Parameter estimate t-Stat.

otherwise) 2.12 4.09
rsection approach, 0 otherwise) 1.20 2.01

1.79 2.04
ed by 5 mi/h, 0 otherwise) −0.96 −2.10

−0.060 −2.02
0.44 2.47

han 60 years old, 0 otherwise) 0.77 2.21
 0 otherwise) −0.52 −1.90
wise) −0.85 −1.77

1.07 2.34
e) −1.19 −2.46
ed median, 0 otherwise) −2.10 −2.80
eater than the suggested yellow 0.67 3.56

ced by 10 mi/h, 0 otherwise) 0.85 2.38
ehicles, 0 otherwise) −1.14 −3.24

−0.0125 −1.70
ed median, 0 otherwise) −1.23 −1.63

0.24 −5.85a

−3.28 −3.63
en drinking, 0 otherwise) 1.91 3.27
wise) 1.34 3.50

−2.02 −1.61
−1.49 −2.23

en drinking, 0 otherwise) 2.06 1.80

635
−1071.61
−753.51

0.30

sted in whether the parameter is significantly different from zero) divided by the
 error, since the statistical difference from 1 indicates whether the nested structure
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Table 4
Average marginal effects of the nested logit model for crash severity at high speed signalized intersections. Severity levels (see Fig. 1): NI = no injury (upper nest); PI = possible
injury  (lower nest), VI = visible injury (lower nest), INI = incapacitating injury (upper nest), F = fatality (upper nest), and LII = lower intermediate injury (upper nest).

Variable NI PI VI INI F LII

Traffic-flow characteristics
Truck percentage −0.0052 −0.000724
Average daily travel per lane (in thousands of vehicles) 0.0383 0.0181 0.0053

Traffic-control characteristics
5 mi/h speed-limit reduction indicator (1 if speed limit is reduced by 5 mi/h, 0 otherwise) −0.0831 −0.0116
10  mi/h speed-limit reduction indicator (1 if speed limit is reduced by 10 mi/h, 0 otherwise) 0.196
Sufficient yellow time indicator (1 if the actual yellow time is greater than the suggested yellow

time 0 otherwise; see text for definition)
0.154

Divided median indicator (1 if intersection approach has a divided median, 0 otherwise) −0.486
Left-turn lane indicator (1 if left-turn lane is present on the intersection approach, 0 otherwise) 0.104 0.024

Driver characteristics
At-fault driver-age indicator (1 if the at-fault driver was  more than 60 years old, 0 otherwise) 0.067 0.0093
At-fault male-driver indicator (1 if the at-fault driver was  male, 0 otherwise) −0.045 −0.0063
At-fault driver drinking indicator (1 if the at-fault driver had been drinking, 0 otherwise) 0.160 0.025

Crash characteristics
Angle crash indicator (1 if the crash was an angle crash, 0 otherwise) −0.073 0.112 −0.010
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Head-on indicator (1 if the crash was head-on crash, 0 otherwise) 

Rear-end crash indicator (1 if the crash was a rear-end crash, 0 otherwise)
Multiple-vehicle indicator (1 if crash involved more than two  vehicles, 0 otherwi

requency of crashes. That is, in the presence of potentially hetero-
eneous driver responses to decreased speed limits, the benefits
rivers accrue from lower speeds (smaller distances covered during
eaction time, which allow a higher likelihood of crash avoid-
nce), at the 5 mi/h speed-limit reduction level, are not necessarily
ufficient to unambiguously decrease the frequency of crashes.6

owever, this ambiguity seems to be resolved at the 10 mi/h speed
imit reduction level. For the 10 mi/h speed-limit reduction indi-
ator, the parameter is fixed and negative indicating a decrease in
pproach crash frequencies. In fact, the marginal effects in Table 3
how that this decrease is reasonably large with 0.34 fewer crashes
er year for approaches that had a 10 mi/h reduction in speed limits
ombined with signal-warning flashers (given that the mean num-
er of crashes at all intersection approaches is 1.13 crashes per year,
.34 crashes per year constitutes a significant safety improvement).
his is an important finding in that it clearly shows that speed limit
eductions of at least 10 mi/h are needed to have an unambiguously
ositive effect on safety.7

. Estimation results: injury severity
Table 3 shows the nested logit model estimation results and the
orresponding marginal effects are presented in Table 4. After mul-
iple trials, the appropriate nested logit model formulation had a

6 The possible increase in speed variance caused by the reduction in speed limit
ould also be playing a role here in that the crash-avoidance benefits caused by lower
peeds are being partially offset by increasing speed variances (making crashes more
ikely). However, as discussed in footnote 1, increasing speed variance is not statis-
ically supported for the intersections in our sample for which speed data were
ollected (Wu et al., 2013).

7 There is the possibility that speed-limit reductions are more likely to be used
t  intersection approaches with high crash frequencies. If this is the case, in the
resence of omitted variables and unobserved heterogeneity, the parameter esti-
ates of the speed-limit reduction indicators will be estimated with a upward bias
ith regard to frequencies because the speed-limit indicators will be picking up
nobserved factors that make these approaches more likely to have high crash fre-
uencies. Our review of speed-limit placement policies, rich model specification,
nd significant negative parameter estimates for speed-limit reduction indicators
uggest that the impact of this potentially non-random implementation of speed-
imit reductions is likely to be minimal. However, in the worst case, our findings
an be considered as a lower bound of the effectiveness of speed-limit reductions.
lease see Carson and Mannering (2001) for a discussion of the non-random imple-
entation of safety countermeasures with regard to the placement of ice-warning

igns in Washington State.
−0.276
0.184 0.043

−0.265

lower nest of lower-intermediate injuries (possible injury and vis-
ible injury) as depicted in Fig. 1.8 As shown in Table 3, the inclusive
value (logsum) of the lower nest produced a parameter estimate of
0.24 with a standard error of 0.13 which gives a t-statistic of −5.85
([  ̌ − 1]/s.e.) showing that the logsum’s parameter estimate is sig-
nificantly different from one, thus validating the form of the nested
logit relative to the standard multinomial logit and indicating the
presence of shared unobserved effects between possible and visible
injury-severity categories.9

As Tables 3 and 4 indicate, all parameter estimates are of plau-
sible sign and magnitude (as reflected in the computed marginal
effects). Turning specifically to the variables of interest (the
speed-limit reduction indicators), the 5 mi/h speed limit reduction
indicator was only found to be significant in the visible-injury out-
come. Marginal effects in Table 4 show that a 5 mi/h speed-limit
reduction reduces the probability of visible injury by 0.0831. This
implies that the probability of other injury categories (no injury,
possible injury, incapacitating injury, and fatality) all increase in
the presence of a 5 mi/h speed-limit reduction.10 As such, the net
effect of a 5 mi/h speed-limit reduction on crash severity is ambigu-
ous because it reduces the probability of visible injury, but increases
the probability of other less severe and more severe crash-injury

outcomes.

In contrast, the effect of the 10 mi/h reduction in speed limit
(whose indicator variable was found to be only significant in the

8 This is in contrast to the earlier work of Savolainen and Mannering (2007) which,
in  their analysis of motorcycle-rider injuries, found the lowest injury-severity cate-
gories shared unobserved effects as opposed to the intermediate categories. This and
other research suggests appropriate nesting structures tend to be quite data-specific
in the case of injury-severity analyses.

9 Recall an inclusive value that is not significantly different from one indicates that
the model reduces to the standard multinomial logit model. It is also noteworthy
that the inclusive value parameter is between zero and one, which is the range
needed for model validity (McFadden, 1981).

10 Note that the fact that the 5 mi/h speed-limit reduction indicator was  found
to  be significant only for the visible-injury outcome (an intermediate severity out-
come) is a further indication that an ordered probability model of crash-severity
outcomes is not appropriate for these data. This is because ordered probability
model structures (such as the standard ordered probit model) do not allow for the
possibility of variables influencing only intermediate outcomes. That is, they do not
allow for the possibility that a variable can simultaneously decrease or simulta-
neously increase the extreme outcomes as is the case here—where the 5 mi/h speed
reduction indicator simultaneously increases the probability of no injury and fatality
crashes.
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o-injury outcome) has an unambiguous effect in that it increases
he probability of a no-injury crash by a substantial 0.196 (as shown
n Table 4) and thus simultaneously decreases the probability of all
f the more severe injury outcomes (visible injury, possible injury,
ncapacitating injury, and fatality).11

These injury-severity findings corroborate the findings in the
rash-frequency model where it was found that the effect of a

 mi/h speed-limit reduction was also ambiguous—reducing crash
requencies on 67% of the intersection approaches while increasing
rash frequencies on 33% of the intersection approaches.

Again, it is speculated that, in the presence of potentially het-
rogeneous driver responses to decreased speed limits, the larger
istances covered during reaction time at lower speeds (allowing

 higher likelihood of crash avoidance) and the reduced energy of
rashes associated with lower speed limits (and the lower speeds
t impact due to the additional reaction-time distance provided)
re not necessarily sufficient to unambiguously decrease the fre-
uency and severity of crashes when the speed-limit reduction is

ust 5 mi/h. However, they are sufficient to unambiguously decrease
he frequency and severity of crashes when the speed-limit reduc-
ion is 10 mi/h.

. Summary and conclusions

This study provides an empirical assessment of the safety
mpacts associated with implementing reduced speed limits in
he vicinity of signalized high-speed intersections equipped with
ignal-warning flashers. The analysis was performed to identify the
ffects of speed-limit reductions on crash frequency and sever-
ty while considering various roadway geometric, traffic-control
nd traffic-flow characteristics. Ten-year crash data from 28 inter-
ections in Nebraska (all with intersection approaches having
ignal-warning flashers and some having either 5 mi/h or 10 mi/h
eductions in highway speed limit) were used to estimate appro-
riate crash frequency and severity models.

The estimation results show, in terms of crash frequency, a
 mi/h speed-limit reduction has an ambiguous effect—decreasing
rash frequency on 67% of the intersection approaches and increas-
ng it on 33% of the intersection approaches. In contrast, a 10 mi/h
peed-limit reduction was shown to unambiguously decrease the
requency of crashes. Crash-severity models produced similar find-
ngs, with 5 mi/h speed-limit reductions increasing the likelihood
f both very minor and very severe crashes (thus making the net
afety benefits ambiguous) and with 10 mi/h speed-limit reduc-
ions unambiguously reducing the probability of more severe
rashes (from crashes with severities of possible injury all the way
p to fatal crashes). As discussed in the text, this finding is likely the
esult of the fact that, in the presence of potentially heterogeneous
river responses to decreased speed limits, the smaller distances
overed during reaction times (allowing a higher likelihood of crash
voidance) and the reduced energy of crashes associated with lower
peed limits are not necessarily sufficient in the 5 mi/h speed-
imit reduction case to unambiguously influence the frequency and
everity of crashes—but they are sufficient to produce unambiguous

ecreases in the frequency and severity of crashes in the 10 mi/h
peed-limit reduction case. Thus the findings of this research are
lear—speed limit reductions in conjunction with signal-warning

11 Along the lines of the discussion in footnote 7, there is the possibility that speed-
imit reductions may  be more likely to be implemented at intersection approaches

ith a history of severe crashes. This would again be problematic in the pres-
nce of omitted variables and unobserved heterogeneity with the result being that
arameter estimates for speed-limit indicators would underestimate their ability
o  mitigate severe crashes. We again find no evidence for the presence of this bias
ut our results could be viewed as a lower bound of the effectiveness of speed-limit
eductions.
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flashers are an effective safety countermeasure, but only clearly so
if the speed-limit reduction is 10 mi/h. As a final point, it should
be noted that the data used in this study only included speed-limit
reductions of 5 mi/h (from 60 to 55 mi/h and from 55 to 50 mi/h)
and 10 mi/h (from 65 to 55 mi/h). A fruitful area for further research
would be to consider the effect of different base speed limits and
speed-limit reductions.
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