Queensland University of Technology

Transport Data Analysis and Modeling Methodologies

Lab Session #5 (Discrete Data – Multinomial Logit Analysis II)

Using the information from Lab Session #7, perform the following:

- 1. Develop a new model with a price variable in all three choice alternatives. The price variable is created as:
 - set price = ((distance/10)/mpg)*1.05
- 2. Calculate direct elasticities for all continuous variables using the Limdep "effects" command (see software command-file downloads for Lab Session #7). Briefly comment on your findings.
- 3. Perform a likelihood ratio test to determine if men and women should be modeled separately. The test statistic is (see page 334 in the text):

$$-2[LL(\beta_T) - LL(\beta_M) - LL(\beta_F)]$$

where $LL(\beta_T)$ is the log-likelihood at convergence of the model estimated with the data (males and females), $LL(\beta_M)$ is the log-likelihood at convergence of the model using only male data (use Limdep commands: **reject;x11=0\$**); then return to full sample with **include;x11=0\$**), and $LL(\beta_F)$ is the log-likelihood at convergence of the model using only female data (**reject;x11=1\$**; **include;x11=0\$**). This statistic is χ^2 distributed with degrees of freedom equal to the summation of the number of estimated parameters in individual male and female models minus the number of estimated parameters in the overall model. The resulting χ^2 statistic provides the probability that the models have different parameters. Confidence levels for this can be read from Table C.3 on page 471 of the text. Briefly comment on your findings.

4. Using all data again (male and female), determine if the price variable should have separate parameters in the alternatives or if they should be the across alternatives. The test statistic is:

$$-2[LL(\beta_{same}) - LL(\beta_{dif})]$$

where $LL(\beta_{same})$ is the log-likelihood at convergence of the model estimated with the same betas for price and $LL(\beta_{dif})$ is the log-likelihood at convergence using different betas for price. This statistic is χ^2 distributed with degrees of freedom equal to the number of estimated parameters in the "different" model minus the number of estimated parameters in the "same" model.

Variables available for your specification are (in file LOGIT-A1.txt):

Variable Number	Explanation
x1	Route chosen, rows: 1 - arterial, 2 - rural road, 3 - freeway
x2	Arterial row indicator; 1 for arterial row, 0 for others
х3	Rural row indicator; 1 for rural row, 0 for others
x4	Freeway row indicator; 1 for freeway row, 0 for others
x5	Traffic flow rate
х6	Number of traffic signals
x7	Distance in tenths of miles
x8	Seat belts: 1 - if wear, 0 - if not
x9	Number of passengers in car
x10	Driver age in years: 1 - 18 to 23, 2 - 24 to 29, 3 - 30 to 39, 4 - 40 to 49, 5 - 50 and above
x11	Gender: 1 - male, 0 - female
x12	Marital status: 1 - single, 0 - married
x13	Number of children
x14	Annual income: 1 - less than 20000, 2 - 20000 to 29999, 3 - 30000 to 39999, 4 - 40000 to 49999, 5 - more than 50000
x15	Model year of car (e.g. 86 = 1986)
x16	Origin of car: 1 - domestic, 0 - foreign
x17	Fuel efficiency in miles per gallon

```
--> nlogit;lhs=x1;choices=arterial,rural,freeway;model:
    u(arterial)=pricea*price/
    u(rural)=rural*one+pricer*price+cager*cage/
    u(freeway)=freeway*one+pricef*price+cagef*cage
    ;effects:price(arterial,rural,freeway)$
Normal exit from iterations. Exit status=0.
```

Normal exit fro	m iterations.	Exit status=	0.		
+	Maximum Likel Dependent var Weighting var Number of obs Iterations of Log likelihoo Log-L for Cho R2=1-LogL/Log No coefficier Constants on Chi-squared[Significance Response data Number of obs	fis -165.890 ly -124.220 5] for chi-squa: a are given as s.= 151, sk	-93.36 -93.36 -93.36 cn R-sqrd 05 .43718 67 .24842 61.72 red = 1.00 s ind. choi	Oice ONE 151 7 6639 8664 RsqAdj .42383 .23058 2054 0000 Lce.	
+ Variable	efficient St	andard Error	b/St.Er.	P[Z >z]	++ Mean of X
PRICEA -27.7 RURAL 1.88 PRICER -35.9 CAGER .203 FREEWAY -2.49 PRICEF -21.1 CAGEF .248	1209071 5 8657416 2028994 5 8199955 5787215 3028876 5 8462123	5.9563728 .95838867 5.9418484 .79595473E-01 1.3837006 5.8351276 .97689275E-01	-4.653 1.971 -6.045 2.561 -1.804 -3.621 2.547	.0000 .0488 .0000 .0104 .0713 .0003	,
Elastic	ity te is PRICE hoice=ARTERIAI hoice=RURAL hoice=FREEWAY	Averaged or in choice A	ver observa RTERIAL 00 .000 00 .000	-6.060 1.523 1.523	-6.060 1.523 1.523
+ Elastic Attribu * C * C	ity te is PRICE hoice=ARTERIAI hoice=RURAL hoice=FREEWAY	Averaged of in choice RI .000 .00	ver observa URAL 00 .000 00 .000	5.507 -3.163 5.507	5.507 -3.163 5.507
Elastic	ity te is PRICE hoice=ARTERIAI hoice=RURAL hoice=FREEWAY	Averaged or in choice Fl	ver observa REEWAY	ations.	j